2 resultados para OPTICAL SYSTEMS
em Scielo Saúde Pública - SP
Resumo:
Fabrication of new optical devices based upon the incorporation of rare earth ions via sol-gel methods depends on elimination of dopant ion clusters and residual hydroxyl groups from the final material. The optical absorption and/or luminescence properties of luminescent rare earth ions are influenced by the local bonding environment and the distribution of the rare-earth dopants in the matrix. Typically, dopants are incorporated into gel via dissolution of soluble species into the initial precursor sol. In this work, Eu3+ is used as optical probe, to assess changes in the local environment. Results of emission, excitation, fluorescence line narrowing and lifetimes studies of Eu3+-doped gels derived from Si(OCH3)4 and fluorinated/chelate Eu3+ precursors are presented. The precursors used in the sol-gel synthesis were: tris (6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedionate) Eu(III), Eu (III) trifluoromethanesulfonate, Eu(III) acetylacetonate hydrate, Eu (III) trifluoroacetate trihidrate, tris (2,2,6,6-tetramethyl-3,5- heptanedionate) Eu(III) and Eu(NO3)3.6H2O. The results were interpreted in terms of the evolution of the Eu3+ fluorescence in systems varying from solution to the gels densified to 800ºC. The lifetimes studies indicate that the fluorinated precursors are effective at reducing the water content in densified gels.
Resumo:
Optical coherence tomography (OCT) is a promising medical imaging technique that uses light to capture real-time cross-sectional images from biological tissues in micrometer resolution. Commercially available optical coherence tomography systems are employed in diverse applications, including art conservation and diagnostic medicine, notably in cardiology and ophthalmology. Application of this technology in the brain may enable distinction between white matter and gray matter, and obtainment of detailed images from within the encephalon. We present, herein, the in vivo implementation of OCT imaging in the rat brain striatum. For this, two male 60-day-old rats (Rattus norvegicus, Albinus variation, Wistar) were stereotactically implanted with guide cannulas into the striatum to guide a 2.7-French diameter high-definition OCT imaging catheter (Dragonfly™, St. Jude Medical, USA). Obtained images were compared with corresponding histologically stained sections to collect imaging samples. A brief analysis of OCT technology and its current applications is also reported, as well as intra-cerebral OCT feasibility on brain mapping during neurosurgical procedures.