8 resultados para Nutrients in aquatic sediments
em Scielo Saúde Pública - SP
Bioaccumulation of metals in aquatic insects of streams located in areas with sugar cane cultivation
Resumo:
Streams located in areas of sugar cane cultivation receive elevated concentrations of metal ions from soils of adjacent areas. The accumulation of metals in the sediments results in environmental problems and leads to bioaccumulation of metal ions by the aquatic organisms. In the present study, bioaccumulation of the metals ions Al, Cd, Cr, Cu, Fe, Mg, Mn and Zn in aquatic insects in streams impacted by the sugar cane was evaluated. The results pointed out that the insects were contaminated by the sediment and that the collector organisms as Chironomus species accumulated higher concentration of metals than the predator organisms.
Resumo:
On an apple grove situated at Buri, State of São Paulo, fruits were collected from trees 1-2; 3-4; 4-5, and 6 - 7 years old. The fruits were analysed for N, P, K, Ca, Mg, S, B, Cu, Fe, Mn and Zn. The authors concluded: a) the concentrations of the nutrients in the fruits differ according to the variety, age of the tree and age of the fruit; b) the concentrations of nutrients decrease with aging of the fruits; c) the concentrations of the macronutrients obey the following order: N>K>P>Ca>S> Mg; d) for the micronutrients, the following order was ob -served: Fe > B > Mn > Cu > Zn.
Resumo:
Lime and gypsum influence nutrient availability and uptake, as well as the content of organic acids in the aerial plant parts. These changes, quantified by plant analysis of soluble nutrients, may potentiate the effect of soil amendment, ensuring the sustainability of the no-tillage system. In this sense the effect of lime and gypsum surface application on the content of water-soluble nutrients in peanut and oat residues was evaluated. The experiment was conducted on an Oxisol in Botucatu (SP) in the growing seasons 2004/2005 and 2005/2006. It was arranged in a randomized block design in split plots with four replications, where lime rates represented the plots and presence or absence of gypsum application the subplots. Peanut was grown in summer and white oat in the winter in the entire experimental area. Gypsum applied to peanut increased soluble Ca only in the first season, due to the short period between product application and determination of soluble nutrient contents in the plant extract. Liming of peanut and oat increased soluble Ca, Mg, K contents, did not alter Cu content and reduced Zn, Mn and Fe contents in both years of cultivation. Gypsum on the other hand reduced the electrical conductivity of peanut (2004/2005 and 2005/2006) and white oat (2004/2005).
Resumo:
Successive applications of pig slurry to soils under no-tillage can increase the nutrient levels in the uppermost soil layers and part of the nutrients may be transferred to deeper layers. The objective was to evaluate the distribution of nutrients in the profile of a soil after 19 pig slurry applications under no-tillage for 93 months. The experiment was conducted from May 2000 to January 2008 in an experimental area of the Federal University of Santa Maria, southern Brazil, on a Typic Hapludalf. The treatments consisted of pig slurry applications (0, 20, 40 and 80 m³ ha-1) and at the end of the experiment, soil samples were collected (layers 0-2, 2-4, 4-6, 6-8, 8-10, 10-12, 12-14, 14-16, 16-18, 18-20, 20-25, 25-30, 30-35, 35-40, 40-50 and 50-60 cm). The levels of mineral N, available P and K and total N, P and K were evaluated. The 19 pig slurry applications in 93 months promoted migration of total N and P down to 30 cm and available P and K to the deepest layer analyzed. At the end of the experiment, no increase was observed in mineral N content in the deeper layers, but increased levels of available P and K, showing a transfer of N, P and K to layers below the sampled. This evidences undesirable environmental and economic consequences of the use of pig slurry and reinforces the need for a more rational use, i.e., applications of lower manure doses, combined with mineral fertilizers.
Influence of micronutrients on dry matter yield and interaction with other nutrients in annual crops
Resumo:
The objective of this work was to determine the influence of Zn, Mn and Cu on shoot dry matter yield and uptake of macro and micronutrients in upland rice, common bean and corn. Six greenhouse experiments were conducted using a Dark Red Latosol (Typic Haplusthox). Treatments consisted of application of Zn at 0, 5, 10, 20, 40, 80 and 120 mg kg-1, of Mn at 0, 10, 20, 40, 80, 160, 320 and 640 mg kg-1 and of Cu application at 0, 2, 4, 8, 32, 64 and 96 mg kg-1. Zinc increased yield of rice, Mn increased yields of corn and bean and Cu improved yields of rice and bean. Uptake of N, Ca, and Cu in rice was decreased by zinc treatment. In common bean, uptake of N, Mg, and Cu was increased by zinc application, whereas, uptake of P was decreased. Manganese increased uptake of Mg, Zn and Fe and decreased uptake of Ca, in corn. Uptake of K, Zn and Mn was increased and uptake of P and Cu was decreased by Mn application, in bean. Copper had positive and negative interactions in the uptake of macro and micronutrients, depending on crop species and nutrients involved.
Resumo:
The high number of cassava cultivars adapted to many different regions provides a wide variation in the chemical composition of cassava leaves meal (CLM). Therefore, the contents of some nutrients in CLM from five cultivars at three ages of the plant were investigated in order to select the cultivars and ages with superior levels of these nutrients. When the plants were 12 months old, the highest levels of crude protein (CP), beta-carotene, iron, magnesium, phosphorus and sulfur were observed. The IAC 289-70 cv. showed the highest levels of magnesium, as well as considerable contents of CP, beta-carotene, iron, zinc and sulfur, which did not differ statistically from the cultivars showing the highest levels of these nutrients.
Resumo:
The objective of this work was to analyze the fatty acid composition and nutrient potential of flour made from tilapia heads, which are normally discarded during the filleting operation. Significant differences were found between the proximate composition (moisture, ash, protein and total lipids) of the in natura tilapia and the flour, due to the drying process. The predominant fatty acids in the heads (in natura and in the flour) were palmitic acid (1,999 mg.100 g-1 and 7,699 mg.100 g-1, respectively), oleic acid (3,128 mg.100 g-1 and 11,447 mg.100g-1, respectively), and linoleic acid (1,018 mg.100 g-1 and 3,784 mg.100 g-1, respectively). The results lead us to conclude that tilapia head flour offers high levels of protein (38.41%), total lipids (35.46%), and ash (minerals) (19.38%). The content of omega-3 (731 mg.100 g-1) were proved to be satisfactory. Also, n-6/n-3 ratio was 6.15 and PUFA/SFA ratio was 0.47, which are in agreement with the recommended levels. Thus, tilapia heads can be used as a low-cost raw material for food fit for human consumption.