181 resultados para Nutrient efficiency
em Scielo Saúde Pública - SP
Resumo:
Biosolids have been considered satisfactory to supply crops and plant nutrients. The ideal biosolids application rate should result in high crop yields and nutrient uptake, and leave low concentrations of nutrients in soils to avoid environmental problems. The objective of this study was to estimate the capacity of five biosolids to supply N and P to ryegrass (Lolium perenne) after a single application of either fertilizers or biosolids to a Spodosol and an Oxisol. Results showed that 6% - 36% of N and 3% - 7% of P applied as biosolids were recovered in plants grown on the Spodosol, while the range on the Oxisol was 26%-75% for N and 1.2%-3.7% for phosphorus. Biosolids' efficiency on supplying N and P to plants was similar to fertilizer on the Spodosol, but on the Oxisol it refrained to 65%-67% fertilizer's efficiency. After a single application of biosolids followed by six consecutive harvests, 25%-94% of the N and 93%-99% of the P were not used by plants and remain in the soils.
Resumo:
The rosewood (Aniba rosaeodora Ducke) is a native tree species of Amazon rainforest growing naturally in acidic forest soils with reduced redox potential. However, this species can also been found growing in forest gaps containing oxide soils. Variations in the forms of mineral nitrogen (NO3- or NH4+) may be predicted in these different edaphic conditions. Considering that possibility, an experiment was carried out to analyze the effects of different NO3-:NH4+ ratios on the growth performance, mineral composition, chloroplastid pigment contents, photochemical efficiency photosystem II (PSII), and nitrate redutase activity (RN, E.C.1.6.6.1) on A. rosaeodora seedlings. Nine-month-old seedlings were grown in pots with a washed sand capacity of 7.5 kg and submitted to different NO3-:NH4+ ratios (T1 = 0:100%, T2 = 25:75%, T3 = 50:50%, T4 = 75:25%, and T5 = 100:0%). The lowest relative growth rate was observed when the NO3-:NH4+ ratio was equal to 0:100%. In general, high concentrations of NO3- rather than NH4+ favored a greater nutrient accumulation in different parts of the plant. For the chloroplastid pigment, the highest Chl a, Chl b, Chl tot, Chl a/b and Chl tot/Cx+c contents were found in the treatment with 75:25% of NO3-:NH4+, and for Chl b and Cx+c it was observed no difference. In addition, there was a higher photochemical efficiency of PSII (Fv/Fm) when high NO3- concentrations were used. A linear and positive response for the nitrate reductase activity was recorded when the nitrate content increased on the culture substrate. Our results suggest that A. rosaeodora seedlings have a better growth performance when the NO3- concentrations in the culture substrate were higher than the NH4+ concentrations.
Resumo:
Two sweet sorghum varieties, Brandes and Rio, were grown in full strenght and diluted nutrient solutions till completing the life cycle wherein mineral analyses were carried out. As a rule both varieties showed the same capacity to absorb nutrients in the two rates supplied. Dry matter yield, however was different in the dilute nutrient solution. The variety Brandes produced more fresh stalks in the full strength solution than Rio; under nutricional stress the yield was lower. Dry matter of stalks in the case of the variety Rio was consistently higher.
Resumo:
High rates of phosphate fertilizers are applied to potato (Solanum tuberosum L.), which may cause antagonistic interactions with other nutrients and limit crop yields when over-supplied. The purpose of this study was to evaluate the influence of phosphorus (P) levels in nutrient solution on P use efficiency, nutritional status and dry matter (DM) accumulation and partitioning of potato plants cv. Ágata. The experiment was carried out in a greenhouse, arranged in a completely randomized block design with four replications. Treatments consisted of seven P levels in nutrient solution (0, 2, 4, 8, 16, 31, and 48 mg L-1). Plants were harvested after 28 days of growth in nutrient solution, and separated in roots, stems and leaves for evaluations. The treatment effects were analyzed by regression analysis. Phosphorus levels of up to 8 mg L-1 increased the root and shoot DM accumulation, but drastically decreased the root/shoot ratio of potato cv. Ágata. Higher P availability increased P concentration, accumulation and absorption efficiency, but decreased P use efficiency. Higher P levels increased the N, P, Mg, Fe, and Mn concentrations in roots considerably and decreased K, S, Cu, and Zn concentrations. In shoot biomass, N, P, K, and Ca concentrations were significantly increased by P applied in solution, unlike Mg and Cu concentrations. Although higher P levels (> 8 mg L-1) in nutrient solution increased P concentration, accumulation and absorption efficiency, the DM accumulation and partitioning of potato cv. Ágata were not affected.
Resumo:
The germ fraction with pericarp (bran) is generated in the industrial processing of corn kernel, and it is used for oil extraction and animal feed. This study evaluated the nutritional and protein quality of this fraction in relation to whole corn. The proximate composition, mineral contents, and amino acid profile of the germ fraction with pericarp and of whole corn were determined. A 4-week experiment was conducted using 36 weanling male Wistar rats, and three 10%-protein diets (reference, germ with 15% lipids and casein with 15% lipids), two 6%-protein diets (whole corn and casein), and a protein-free diet were prepared. The germ showed higher contents of proteins, lipids, dietary fiber (27.8 g.100 g-1), ash, minerals (Fe and Zn- approximately 5 mg.100 g-1), and lysine (57.2 mg.g-1 protein) than those of corn. The germ presented good quality protein (Relative Protein Efficiency Ratio-RPER = 80%; Protein Digestibility-Corrected Amino Acid Score-PDCAAS = 86%), higher than that of corn (RPER = 49%; PDCAAS = 60%). The corn germ fraction with pericarp is rich in dietary fiber, and it is a source of good quality protein as well as of iron and zinc, and its use as nutritive raw material is indicated in food products for human consumption.
Resumo:
Studies on nutritional efficiency of phosphorus in conilon coffee plants are important tools to unravel the high limitation that natural low levels of this nutrient in soil impose to these species cultivars. Therefore, this study aimed at evaluating the nutritional efficiency and the response to phosphorus of conilon coffee clones. Plants were managed during 150 days in pots containing 10 dm³ of soil, in greenhouse. A factorial scheme 13 x 2 was used, with three replications, being the factors: 13 clones constituting the clonal cultivar "Vitória Incaper 8142" and two levels of phosphate fertilization (0% and 150% of the P2O5 usualy recommended), in a completely randomized design (CRD). The results indicate a differentiated response of dry matter production and of phosphorus content on each level of phosphate fertilization for the conilon coffee clones and that CV-04, CV-05 and CV-08 clones are nutritionally efficient and responsive to the phosphate fertilization.
Resumo:
n plant breeding programs that aim to obtain cultivars with nitrogen (N) use efficiency, the focus is on methods of selection and experimental procedures that present low cost, fast response, high repeatability, and can be applied to a large number of cultivars. Thus, the objectives of this study were to classify maize cultivars regarding their use efficiency and response to N in a breeding program, and to validate the methodology with contrasting doses of the nutrient. The experimental design was a randomized block with the treatments arranged in a split-plot scheme with three replicates and five N doses (0, 30, 60, 120 and 200 kg ha-1) in the plots, and six cultivars in subplots. We compared a method examining the efficiency and response (ER) with two contrasting doses of N. After that, the analysis of variance, mean comparison and regression analysis were performed. In conclusion, the method of the use efficiency and response based on two N levels classifies the cultivars in the same way as the regression analysis, and it is appropriate in plant breeding routine. Thus, it is necessary to identify the levels of N required to discriminate maize cultivars in conditions of low and high N availability in plant breeding programs that aim to obtain efficient and responsive cultivars. Moreover, the analysis of the interaction genotype x environment at experiments with contrasting doses is always required, even when the interaction is not significant.
Resumo:
Green manuring is recognized as a viable alternative to improve nutrient cycling in soils. The aim of this study was to evaluate the phytomass production and nutrient accumulation in shoots of the summer green manures jack bean [Canavalia ensiformis (L.) DC.], dwarf pigeon pea (Cajanus cajanvar var. Flavus DC.), dwarf mucuna [Mucuna deeringiana (Bort) Merr] and sunn hemp (Crotalaria juncea L.), under nitrogen fertilization and/or inoculation with N-fixing bacteria. A split plot design was arranged with the four Fabaceae species as main plots and nitrogen fertilization (with and without) and inoculation with diazotrophic bacteria (with and without) as the subplots, in a 2² factorial. The experiment was arranged as a randomized complete block design with four replications. In the conditions of this trial, the sunn hemp had the highest production of shoot phytomass (12.4 Mg ha-1) and nutrient accumulation, while the dwarf mucuna had the lowest production of shoot phytomass (3.9 Mg ha-1) and nutrient accumulation. The results showed no effect of nitrogen fertilization or inoculation with N-fixing bacteria on the production of shoot phytomass and nutrient accumulation, except for inoculation without nitrogen fertilization, resulting in greater P accumulation (p <0.05) in the sunn hemp and greater Zn and Mn accumulation in the dwarf mucuna. These findings indicate that N fertilization or inoculation with N2-fixing bacteria for Fabaceae are low efficiency practices in the edaphoclimatic conditions of this study.
Resumo:
ABSTRACT The indiscriminate use of mineral fertilizers in papaya orchards has increased production costs, and the use of arbuscular mycorrhizal fungi is a promising alternative to reduce such expenses. Therefore, the present research aimed at studying the efficiency of arbuscular mycorrhizal fungi (AMF) on dry matter and nutrient accumulation in Sunrise Solo papaya seedlings, by applying doses of P2O5 (triple superphosphate) that are harmful to the symbiosis. The experiment was carried out in a protected environment and was set up in a randomized block design with four replications, and consisted of four P2O5 doses (0, 672, 1386 and 2100 mg dm-3), three mycorrhizal fungi species (Gigaspora margarita, Entrophospora colombiana and Scutellospora heterogama) and the control treatment (mycorrhiza-free). Shoot and root dry matter as well as nitrogen, phosphorus and potassium contents in leaf and root tissues were assessed. Mycorrhizal inoculation promoted a 30% increase in shoot dry matter in relation to the control treatment. Mycorrhizal fungi promoted increases in leaf and root nitrogen content up to 672 mg dm-3 P2O5. Inoculation of E. colombiana favored the highest gains in root and shoot dry matter. P2O5 fertilization increased foliar and root phosphorus content.
Resumo:
The most advanced stage of water erosion, the gully, represents severe problems in different contexts, both in rural and urban environments. In the search for a stabilization of the process in a viable manner it is of utmost importance to assess the efficiency of evaluation methodologies. For this purpose, the efficiency of low-cost conservation practices were tested for the reduction of soil and nutrient losses caused by erosion from gullies in Pinheiral, state of Rio de Janeiro. The following areas were studied: gully recovered by means of physical and biological strategies; gullies in recovering stage, by means of physical strategies only, and gullies under no restoration treatment. During the summer of 2005/2006, the following data sets were collected for this study: soil classification of each of the eroded gully areas; planimetric and altimetric survey; determination of rain erosivity indexes; determination of amount of soil sediment; sediment grain size characteristics; natural amounts of nutrients Ca, Mg, K and P, as well as total C and N concentrations. The results for the three first measurements were 52.5, 20.5, and 29.0 Mg in the sediments from the gully without intervention, and of 1.0, 1.7 and 1.8 Mg from the gully with physical interventions, indicating an average reduction of 95 %. The fully recovered gully produced no sediment during the period. The data of total nutrient loss from the three gullies under investigation showed reductions of 98 % for the recovering gully, and 99 % for the fully recovered one. As for the loss of nutrients, the data indicate a nutrient loss of 1,811 kg from for the non-treated gully. The use of physical and biological interventions made it possible to reduce overall nutrient loss by more than 96 %, over the entire rainy season, as compared to the non-treated gully. Results show that the methods used were effective in reducing soil and nutrient losses from gullies.
Resumo:
In order to select soil management practices that increase the nitrogen-use efficiency (NUE) in agro-ecosystems, the different indices of agronomic fertilizer efficiency must be evaluated under varied weather conditions. This study assessed the NUE indices in no-till corn in southern Paraguay. Nitrogen fertilizer rates from 0 to 180 kg ha-1 were applied in a single application at corn sowing and the crop response investigated in two growing seasons (2010 and 2011). The experimental design was a randomized block with three replications. Based on the data of grain yield, dry matter, and N uptake, the following fertilizer indices were assessed: agronomic N-use efficiency (ANE), apparent N recovery efficiency (NRE), N physiological efficiency (NPE), partial factor productivity (PFP), and partial nutrient balance (PNB). The weather conditions varied largely during the experimental period; the rainfall distribution was favorable for crop growth in the first season and unfavorable in the second. The PFP and ANE indices, as expected, decreased with increasing N fertilizer rates. A general analysis of the N fertilizer indices in the first season showed that the maximum rate (180 kg ha-1) obtained the highest corn yield and also optimized the efficiency of NPE, NRE and ANE. In the second season, under water stress, the most efficient N fertilizer rate (60 kg ha-1) was three times lower than in the first season, indicating a strong influence of weather conditions on NUE. Considering that weather instability is typical for southern Paraguay, anticipated full N fertilization at corn sowing is not recommended due the temporal variability of the optimum N fertilizer rate needed to achieve high ANE.
Resumo:
ABSTRACT The literature on fertilization for carrot growing usually recommends nutrient application rates for yield expectations lower than the yields currently obtained. Moreover, the recommendation only considers the results of soil chemical analysis and does not include effects such as crop residues or variations in yield levels. The aim of this study was to propose a fertilizer recommendation system for carrot cultivation (FERTICALC Carrot) which includes consideration of the nutrient supply by crop residues, variation in intended yield, soil chemical properties, and the growing season (winter or summer). To obtain the data necessary for modeling nutritional requirements, 210 carrot production stands were sampled in the region of Alto Paranaíba, State of Minas Gerais, Brazil. The dry matter content of the roots, the coefficient of biological utilization of nutrients in the roots, and the nutrient harvest index for summer and winter crops were determined for these samples. To model the nutrient supply by the soil, the literature was surveyed in regard to this theme. A modeling system was developed for recommendation of macronutrients and B. For cationic micronutrients, the system only reports crop nutrient export and extraction. The FERTICALC which was developed proved to be efficient for fertilizer recommendation for carrot cultivation. Advantages in relation to official fertilizer recommendation tables are continuous variation of nutrient application rates in accordance with soil properties and in accordance with data regarding the extraction efficiency of modern, higher yielding cultivars.
Resumo:
We analyzed the nutritional composition and isotope ratios (C and N) of big-leaf mahogany (Swietenia macrophylla King) leaves in plantations established on contrasting soils and climates in Central America (State of Quintana Roo, Yucatán, México) and South America (State of Pará, Brazil). The objective was to determine the adaptability of this species to large differences in nutrient availability and rainfall regimes. Nutrient concentrations of leaves and soils were determined spectrophotometrically, and isotope ratios were measured using mass spectrometric techniques.In Pará soils were sandier, and acidic, receiving above 2000 mm of rain, whereas in Quintana Roo soils were predominantly clayey, with neutral to alkaline pH due to the underlying calcareous substrate, with about 1300 mm of rain. Leaf area/weight ratio was similar for both sites, but leaves from Quintana Roo were significantly smaller. Average N and K concentrations of adult leaves were similar, whereas Ca concentration was only slightly lower in Pará in spite of large differences in Ca availability. Leaves from this site had slightly higher P and lower Al concentrations. Differences in water use efficiency as measured by the natural abundance of 13C were negligible, the main effect of lower rainfall in Quintana Roo seemed to be a reduction in leaf area. The N isotope signature (δ15N) was more positive in Pará than in Quintana Roo, suggesting higher denitrification rates in the former. Results reveal a calciotrophic behavior and a remarkable capacity of mahogany to compensate for large differences in soil texture and nutrient availability.
Resumo:
In order to identify alternatives for the use of saline water in agricultural production, the effects of the use of brackish water in the preparation of the nutrient solution for the cultivation of sunflower (cv. EMBRAPA 122-V2000) were studied in hydroponic system on consumption and efficiency of water use for the production of achenes and biomass. A completely randomized design was used, analyzed in a 5x2 factorial scheme with three replications. The factors studied were five levels of salinity of nutrient solution (1.7 - control; 4.3; 6.0; 9.0; and 11.5dS m-1) and two plant densities - one or two plants per vessel. It was concluded that the water consumption of sunflower is a variable sensitive to the salinity of the nutrient solution, especially after the fourth week of crop, and that the efficiency of water use in the production of achenes and biomass of sunflower is greater when the plant density increases from one to two plants per vessel, even under saline stress.
Resumo:
Litterfall and transfer of nutrients was estimated in two tropical coastal forests of Brazil - the Atlantic and the Restinga Forests at Cardoso Island, São Paulo. Samples were collected monthly, from June 1990 to May 1991, using thirty 0.25 m2 traps. There were significant differences in litter production between the Atlantic Forest (6.3 t.ha-1.year-1) and the Restinga Forest (3.9 t.ha-1.year-1). Litterfall was continuous throughout the year with maximum in the beginning of the rainy season in both sites. The annual return of mineral elements through litter in the Atlantic Forest was (kg.ha-1): 101.8 N, 3.8 P, 20.3 K, 60.0 Ca, 18.0 Mg, and 14.6 S and in the Restinga Forest was: 27.5 N, 1.0 P, 6.5 K, 30.0 Ca, 10.9 Mg, and 6.6 S. The return, although small, is relevant due to the low fertility of the soils in those ecosystems, especially in Restinga. The Restinga Forest seems to be an ecosystem well adapted to oligotrophic conditions, lying among those presenting higher nutrient use efficiency.