23 resultados para Nonlinear Filters
em Scielo Saúde Pública - SP
Resumo:
White cell (WBC)-reduction filters have been shown to be effective in removing infectious agents from infected blood products. In this study, the mechanisms of Trypanosoma cruzi (T. cruzi) retention by WBC-reduction filters were assessed. Human packed red blood cell (PRBC) and platelet concentrate (PC) samples were contaminated with T. cruzi organisms (Y strain; 3.4 x 10(6)/ml), and then filtered using WBC-reduction experimental filters that provided about 3 log10 WBC removal. Transmission electron microscopy sections showed that T. cruzi parasites were removed from contaminated PRBC and PC samples primarily by mechanical mechanism without interacting with filter fibbers or blood cells. In addition, we found that T. cruzi parasites were also removed by a direct fibber adhesion. These data indicate that T. cruzi parasites are removed from infected blood not only by mechanical mechanism but also by biological mechanism probably mediated by parasite surface proteins.
Resumo:
The objective of this study was to adapt a nonlinear model (Wang and Engel - WE) for simulating the phenology of maize (Zea mays L.), and to evaluate this model and a linear one (thermal time), in order to predict developmental stages of a field-grown maize variety. A field experiment, during 2005/2006 and 2006/2007 was conducted in Santa Maria, RS, Brazil, in two growing seasons, with seven sowing dates each. Dates of emergence, silking, and physiological maturity of the maize variety BRS Missões were recorded in six replications in each sowing date. Data collected in 2005/2006 growing season were used to estimate the coefficients of the two models, and data collected in the 2006/2007 growing season were used as independent data set for model evaluations. The nonlinear WE model accurately predicted the date of silking and physiological maturity, and had a lower root mean square error (RMSE) than the linear (thermal time) model. The overall RMSE for silking and physiological maturity was 2.7 and 4.8 days with WE model, and 5.6 and 8.3 days with thermal time model, respectively.
Resumo:
The objective of this work was to estimate the stability and adaptability of pod and seed yield in runner peanut genotypes based on the nonlinear regression and AMMI analysis. Yield data from 11 trials, distributed in six environments and three harvests, carried out in the Northeast region of Brazil during the rainy season were used. Significant effects of genotypes (G), environments (E), and GE interactions were detected in the analysis, indicating different behaviors among genotypes in favorable and unfavorable environmental conditions. The genotypes BRS Pérola Branca and LViPE‑06 are more stable and adapted to the semiarid environment, whereas LGoPE‑06 is a promising material for pod production, despite being highly dependent on favorable environments.
Resumo:
A new procedure to find the limiting range of the photomultiplier linear response of a low-cost, digital oscilloscope-based time-resolved laser-induced luminescence spectrometer (TRLS), is presented. A systematic investigation on the instrument response function with different signal input terminations, and the relationship between the luminescence intensity reaching the photomultiplier and the measured decay time are described. These investigations establish that setting the maximum intensity of the luminescence signal below 0.3V guarantees, for signal input terminations equal or higher than 99.7 ohm, a linear photomultiplier response.
Resumo:
This research work aimed at determining the UVA effectiveness (UVA I/UV ratio), by diffuse transmittance analysis, of sunscreens developed with a bioactive substance, the rutin, associating or not with organic UVB-UVA filters incorporated at a phosphate-base O/W emulsion. Sunscreens provided conflicting and unpredictable results concerning the anti-UVA protection, specially, at the UVA I region. Possible interactions among the organic UV filters and the polyphenolic bioactive substance may have accounted with improvement or reduction of UV protection by a complex and not yet elucidated mechanism, probably regarding wavelength delocalization to superior or inferior values, by resonant molecule stabilization or destabilization.
Resumo:
An analytical procedure to quantify 3-benzophenone, octylmethoxycinnamate and octylsalicylate was validated and employed to assess these ultraviolet filters in sunscreen formulations and from skin penetration studies. The effect of the vehicle on the skin retention of these filters was investigated. HPLC and extraction procedure were found to be reliable when obtaining data for the sunscreen formulations and for evaluation skin penetration. The results demonstrated that a cream gel generated higher epidermal concentrations of these filters than a lotion or cream-based formulation. Additionally, when comparing the skin retentions of each filter using the same formulation, 3-benzophenone showed the highest skin retention.
Resumo:
This study aimed to evaluate the effect of Moringa oleifera Lam extract on the removal of total solids (TS), total suspended solids (TSS) and chemical oxygen demand (COD), in different filter media for treating wastewater of dairy cattle breeding (DCW). The moringa seed extract was obtained by grinding 50 g of seeds in one liter of distilled water and, after passing the solution through a quantitative paper filter of 25 microns, 60 mL of the extract were added to wastewater from cattle breeding before the filtration process in organic filters made of thin coal, bamboo leaves, eucalyptus leaves, gliricidia branches and sawdust. This was followed by the completely randomized experimental design, adopting a factorial of 5 x 2. Aliquots of filtered effluent were collected and the total solids (TS) concentrations, total suspended solids (TSS) and chemical oxygen demand (COD) were determined. It was found that the increase in the efficiency of removal of COD and total solids can be attributed to the coagulating power of the moringa seed extract, wherein the filter medium with bamboo leaves presented the best performance, showing potential for use as alternative filter material in the primary treatment of DCW.
Resumo:
This work presents a geometric nonlinear dynamic analysis of plates and shells using eight-node hexahedral isoparametric elements. The main features of the present formulation are: (a) the element matrices are obtained using reduced integrations with hourglass control; (b) an explicit Taylor-Galerkin scheme is used to carry out the dynamic analysis, solving the corresponding equations of motion in terms of velocity components; (c) the Truesdell stress rate tensor is used; (d) the vector processor facilities existing in modern supercomputers were used. The results obtained are comparable with previous solutions in terms of accuracy and computational performance.
Multiple scales analysis of nonlinear oscillations of a portal frame foundation for several machines
Resumo:
An analytical study of the nonlinear vibrations of a multiple machines portal frame foundation is presented. Two unbalanced rotating machines are considered, none of them resonant with the lower natural frequencies of the supporting structure. Their combined frequencies is set in such a way as to excite, due to nonlinear behavior of the frame, either the first anti-symmetrical mode (sway) or the first symmetrical mode. The physical and geometrical characteristics of the frame are chosen to tune the natural frequencies of these two modes into a 1:2 internal resonance. The problem is reduced to a two degrees of freedom model and its nonlinear equations of motions are derived via a Lagrangian approach. Asymptotic perturbation solutions of these equations are obtained via the Multiple Scales Method.
Resumo:
The nonlinear interaction between Görtler vortices (GV) and three-dimensional Tollmien-Schlichting (TS) waves nonlinear interaction is studied with a spatial, nonparallel model based on the Parabolized Stability Equations (PSE). In this investigation the effect of TS wave frequency on the nonlinear interaction is studied. As verified in previous investigations using the same numerical model, the relative amplitudes and growth rates are the dominant parameters in GV/TS wave interaction. In this sense, the wave frequency influence is important in defining the streamwise distance traveled by the disturbances in the unstable region of the stability diagram and in defining the amplification rates that they go through.
Resumo:
A three dimensional nonlinear viscoelastic constitutive model for the solid propellant is developed. In their earlier work, the authors have developed an isotropic constitutive model and verified it for one dimensional case. In the present work, the validity of the model is extended to three-dimensional cases. Large deformation, dewetting and cyclic loading effects are treated as the main sources of nonlinear behavior of the solid propellant. Viscoelastic dewetting criteria is used and the softening of the solid propellant due to dewetting is treated by the modulus decrease. The nonlinearities during cyclic loading are accounted for by the functions of the octahedral shear strain measure. The constitutive equation is implemented into a finite element code for the analysis of propellant grains. A commercial finite element package ABAQUS is used for the analysis and the model is introduced into the code through a user subroutine. The model is evaluated with different loading conditions and the predicted values are in good agreement with the measured ones. The resulting model applied to analyze a solid propellant grain for the thermal cycling load.
Resumo:
The dynamics of flexible systems, such as robot manipulators , mechanical chains or multibody systems in general, is becoming increasingly important in engineering. This article deals with some nonlinearities that arise in the study of dynamics and control of multibody systems in connection to large rotations. Specifically, a numerical scheme that adresses the conservation of fundamental constants is presented in order to analyse the control-structure interaction problems.
Resumo:
A frequency-domain method for nonlinear analysis of structural systems with viscous, hysteretic, nonproportional and frequency-dependent damping is presented. The nonlinear effects and nonproportional damping are considered through pseudo-force terms. The modal coordinates uncoupled equations are iteratively solved. The treatment of initial conditions in the frequency domain which is necessary for the treatment of the uncoupled equations is initially adressed.
Resumo:
One of the main complexities in the simulation of the nonlinear dynamics of rigid bodies consists in describing properly the finite rotations that they may undergo. It is well known that, to avoid singularities in the representation of the SO(3) rotation group, at least four parameters must be used. However, it is computationally expensive to use a four-parameters representation since, as only three of the parameters are independent, one needs to introduce constraint equations in the model, leading to differential-algebraic equations instead of ordinary differential ones. Three-parameter representations are numerically more efficient. Therefore, the objective of this paper is to evaluate numerically the influence of the parametrization and its singularities on the simulation of the dynamics of a rigid body. This is done through the analysis of a heavy top with a fixed point, using two three-parameter systems, Euler's angles and rotation vector. Theoretical results were used to guide the numerical simulation and to assure that all possible cases were analyzed. The two parametrizations were compared using several integrators. The results show that Euler's angles lead to faster integration compared to the rotation vector. An Euler's angles singular case, where representation approaches a theoretical singular point, was analyzed in detail. It is shown that on the contrary of what may be expected, 1) the numerical integration is very efficient, even more than for any other case, and 2) in spite of the uncertainty on the Euler's angles themselves, the body motion is well represented.