64 resultados para Nitrogen effect

em Scielo Saúde Pública - SP


Relevância:

40.00% 40.00%

Publicador:

Resumo:

An experiment was carried out in order to determine the effect of day time of foliar spraying of several levels of nitrogen fertilizers, N-P-K-S station, and its components on common bean leaves. Results, based on the visual observations, indicated the maximum levels of each fertilizer that did not cause injuries and showed that the foliar spraying early in the morning is the best day time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In a greenhouse pot experiment with kohlrabi, variety Luna, we explored the joint effect of N (0.6 g N per pot = 6 kg of soil) and S in the soil (25-35-45 mg kg-1 of S) on yields, on N, S and NO3- content in tubers and leaves, and on alterations in the amino acids concentration in the tubers. S fertilisation had no effect on tuber yields. The ranges of N content in tubers and leaves were narrow (between 1.42-1.48 % N and 1.21-1.35 % N, respectively) and the effect of S fertilisation was insignificant. S concentration in the tubers ranged between 0.59 and 0.64 % S. S fertilisation had a more pronounced effect on the S concentration in leaf tissues where it increased from 0.50 to 0.58 or to 0.76 % S under the applied dose. The NO3- content was higher in tubers than in leaves. Increasing the S level in the soil significantly reduced NO3- concentrations in the tubers by 42.2-53.6 % and in the leaves by 8.8-21.7 %. Increasing the S content in the soil reduced the concentration of cysteine + methionine by 16-28 %. The values of valine, tyrosine, aspartic acid and serine were constant. In the S0, S1, and S2 treatments the levels of threonine, isoleucine, leucine, arginine, the sum of essential amino acids and alanine decreased from 37 to 9 %. The histidine concentration increased with increasing S fertilisation. S fertilisation of kohlrabi can be recommended to stabilize the yield and reduce the undesirable NO3- contained in the parts used for consumption.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of machinery in agricultural and forest management activities frequently increases soil compaction, resulting in greater soil density and microporosity, which in turn reduces hydraulic conductivity and O2 and CO2 diffusion rates, among other negative effects. Thus, soil compaction has the potential to affect soil microbial activity and the processes involved in organic matter decomposition and nutrient cycling. This study was carried out under controlled conditions to evaluate the effect of soil compaction on microbial activity and carbon (C) and nitrogen (N) mineralization. Two Oxisols with different mineralogy were utilized: a clayey oxidic-gibbsitic Typic Acrustox and a clayey kaolinitic Xantic Haplustox (Latossolo Vermelho-Amarelo ácrico - LVA, and Latossolo Amarelo distrófico - LA, respectively, in the Brazil Soil Classification System). Eight treatments (compaction levels) were assessed for each soil type in a complete block design, with six repetitions. The experimental unit consisted of PVC rings (height 6 cm, internal diameter 4.55 cm, volume 97.6 cm³). The PVC rings were filled with enough soil mass to reach a final density of 1.05 and 1.10 kg dm-3, respectively, in the LVA and LA. Then the soil samples were wetted (0.20 kg kg-1 = 80 % of field capacity) and compacted by a hydraulic press at pressures of 0, 60, 120, 240, 360, 540, 720 and 900 kPa. After soil compression the new bulk density was calculated according to the new volume occupied by the soil. Subsequently each PVC ring was placed within a 1 L plastic pot which was then tightly closed. The soils were incubated under aerobic conditions for 35 days and the basal respiration rate (CO2-C production) was estimated in the last two weeks. After the incubation period, the following soil chemical and microbiological properties were detremined: soil microbial biomass C (C MIC), total soil organic C (TOC), total N, and mineral N (NH4+-N and NO3--N). After that, mineral N, organic N and the rate of net N mineralization was calculated. Soil compaction increased NH4+-N and net N mineralization in both, LVA and LA, and NO3--N in the LVA; diminished the rate of TOC loss in both soils and the concentration of NO3--N in the LA and CO2-C in the LVA. It also decreased the C MIC at higher compaction levels in the LA. Thus, soil compaction decreases the TOC turnover probably due to increased physical protection of soil organic matter and lower aerobic microbial activity. Therefore, it is possible to conclude that under controlled conditions, the oxidic-gibbsitic Oxisol (LVA) was more susceptible to the effects of high compaction than the kaolinitic (LA) as far as organic matter cycling is concerned; and compaction pressures above 540 kPa reduced the total and organic nitrogen in the kaolinitic soil (LA), which was attributed to gaseous N losses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated the effect of hairy vetch (Vicia villosa Roth) as cover crop on maize nutrition and yield under no tillage using isotope techniques. For this purpose, three experiments were carried out: 1) quantification of biological nitrogen fixation (BNF) in hairy vetch; 2) estimation of the N release rate from hairy vetch residues on the soil surface; 3) quantification of 15N recovery by maize from labeled hairy vetch under three rates of mineral N fertilization. This two-year field experiment was conducted on a sandy Acrisol (FAO soil classification) or Argissolo Vermelho distrófico arênico (Brazilian Soil Classification), at a mean annual temperature of 18 ºC and mean annual rainfall of 1686 mm. The experiment was arranged in a double split-plot factorial design with three replications. Two levels of hairy vetch residue (50 and 100 % of the aboveground biomass production) were distributed on the surface of the main plots (5 x 12 m). Maize in the sub-plots (5 x 4 m) was fertilized with three N rates (0, 60, and 120 kg ha-1 N), with urea as N source. The hairy vetch-derived N recovered by maize was evaluated in microplots (1.8 x 2.2 m). The BFN of hairy vetch was on average 72.4 %, which represents an annual input of 130 kg ha-1 of atmospheric N. The N release from hairy vetch residues was fast, with a release of about 90 % of total N within the first four weeks after cover crop management and soil residue application. The recovery of hairy vetch 15N by maize was low, with an average of 12.3 % at harvest. Although hairy vetch was not directly the main source of maize N nutrition, the crop yield reached 8.2 Mg ha-1, without mineral fertilization. There was an apparent synergism between hairy vetch residue application and the mineral N fertilization rate of 60 kg ha-1, confirming the benefits of the combination of organic and inorganic N sources for maize under no tillage.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nitrogen is required in large amounts by plants and their dinamics in corn and perennial forages intercropped is little known. This study analyzed the efficiency of nitrogen fertilization (15NH4NO3) applied after corn grain harvest to palisadegrass (Brachiaria brizantha cv. Marandu) in intercrops sown at two times, as well as the N residual effect on the subsequent corn crop. The field experiment was performed in Botucatu, São Paulo State, in southeastern Brazil, on a structured Alfisol under no-tillage. The experiment was arranged in a randomized block design in a split plot scheme with four replications. The main plots consisted of two intercropping systems (corn and palisadegrass sown together and palisadegrass sown later, at corn top-dressing fertilization). The subplots consisted of four N rates (0, 30, 60, and 120 kg ha-1 N). The subplots contained microplots, in which enriched ammonium nitrate (15NH4NO3) was applied at the same rates. The time of intercrop sowing affected forage dry matter production, the amount of fertilizer-derived N in and the N use efficiency by the forage plants. Nitrogen applied in autumn to palisadegrass intercropped with corn, planted either at corn sowing or at N top-dressing fertilization, increased the forage yield up to a rate of 60 kg ha-1. The amount of fertilizer-derived N by the forage plants and the fertilizer use efficiency by palisadegrass were highest 160 days after fertilization for both intercrop sowing times, regardless of N rates. Residual N did not affect the N nutrition of corn plants grown in succession to palisadegrass, but increased grain yield at rates of 60 and 120 kg ha-1 N, when corn was grown on palisadegrass straw from the intercrop installed at corn fertilization (top-dressing). Our results indicated that the earlier intercropping allowed higher forage dry matter production. On the other hand, the later intercrop allowed a higher corn grain yield in succession to N-fertilized palisadegrass.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

ABSTRACT The economic exploitation of macaw palm [Acrocomia aculeate(Jacq.) Lodd. ex Mart.] is currently in transition, from extractivism to agricultural cultivation, thus requiring studies on the fertilization of the crop. This study evaluated the response of three genotypes of macaw palm to increasing rates of nitrogen and potassium, grown in the field until the 2nd year and to establish reference contents of mineral nutrients in the leaf. The experiment was a split-plot randomized block design with five main treatments (N and K rates) and three secondary treatments (genotypes), with three replications, each plot containing three plants. Plant height, leaf number, vigor, and nutrient contents in leaf tissues were evaluated at the end of 2nd year of cultivation. Differential responses were observed among genotypes, indicating that some genotypes are more efficient in the use of mineral inputs. There was a differentiated and positive response to increasing side-dressed N and K rates in the vegetative development of macaw genotypes until the 2nd year of field cultivation, indicating variability in the species in terms of nutrient use efficiency. The N and K fertilization rate corresponding to 360 g N + 480 g K2O per plant, in four split applications over the two years of cultivation, was insufficient to induce maximum vegetative development in the three macaw genotypes. There was no variation in macro- and micronutrient contents in leaf dry matter of the three macaw genotypes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this work was to investigate the effect of water stress on N2 fixation and nodule structure of two common bean (Phaseolus vulgaris L.) cultivars Carioca and EMGOPA-201. Plants were harvested after five and eight days of water stress. Carioca had lower nodule dry weight on both water stress periods; shoot dry weight was lower at five days water stress and did not differ from control after eight days stress. Both cultivars had lower nitrogenase activity than control after five and eight days water stress. For both cultivars, after eight days stress bacteroid membranes were damaged. Carioca presented more pronounced damage to infected tissue, with host cell vacuolation and loss of the peribacteroid membrane at five days after stress; at eight days after stress, there was degradation of cytoplasm host cells and senescence of bacteroids, with their release into intercellular spaces. Intensity of immunogold-labeling of intercellular cortical glycoprotein with the monoclonal antibodies MAC 236/265 was different for both cultivars.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of N addition on apple yield and quality may vary according to the tree vigor. Apple trees developed over vigorous rootstocks had shown no response to N application in Brazil. In this study it was evaluated the effect of N addition to the soil on yield and quality of ´Royal Gala´ apples grafted on a dwarf rootstock (M.9). The orchard was planted in 1995 (2,857 trees ha-1) on an Oxisol containing 40 g kg-1 of organic matter and pH 6.0. The experiment was carried out from 1998 up to 2005. Treatments consisted of rates of N (0, 50, 100 and 150 kg ha-1 year-1 from 1998 to 2001, and respectively 0, 100, 200 and 300 kg ha-1 afterwards), all broadcasted within the tree row in two equal splits, at bud break and after harvest, as ammonium sulfate. Addition of N to the soil had no effect on fruit yield over the six years regardless of the applied rate. Averaged across treatments and years, fruit yield was 52.3 t ha-1. Nitrogen in the leaves (average of 24 g kg-1) or in the fruits (average of 346 mg kg-1) as well as some attributes related to fruit quality (color, firmness, acidity, soluble solids, physiological disorders) were unaffected by N addition. Some plant parameters related to tree vigor, however, grew higher with the increase on N rate. Thus, it is not necessary to apply N to deep Brazilian soils containing high organic matter in order to assure good fruit quality and yield on high-density orchards carrying dwarf rootstocks probably because the N required for tree growth and fruit production is supplied from soil organic matter decay.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study was carried out to evaluate the yield, total N content in leaves and must composition of grapes from the Cabernet Sauvignon variety subjected to the application of urea and organic compost. Cabernet Sauvignon grapevines in Rosário do Sul, RS, Brazil, in 2008, 2009 and 2010 were subjected to annual application of 40 kg N ha-1 in the form of organic compost and urea, and compared to unfertilized grapevines. In the 2008/09, 2009/10 and 2010/11 crop seasons, leaves were collected for analysis of total N content. At maturation of the grapes, the yield and quality attributes of the must were evaluated. The application of N sources, especially organic compost, increased the N content in the whole leaf at full flowering. Application of organic compost and urea has little effect on grape yield and does not affect the total nutrient content in the must, nor the enological attributes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effects of the application of different water depths and nitrogen and potassium doses in the quality of Tanzania grass, in the southern of the state of Tocantins. The experiment was conducted on strips of traditional sprinklers, and used, as treatments, a mixture of fertilizer combinations of N and K2O always in the ratio of 1 N:0.8 K2O. This study determined throughout the experiment: plant height (PH), the crude protein (CP) and neutral detergent fiber (NDF). The highest plant height obtained was 132.4 cm, with a fertilizer dose of 691.71 kg ha-1 in the proportion of N:0.8 K2O, in other words, 384.28 kg ha-1 of N and 307.43 kg ha-1 of K2O, and water depth of 80% of the ETc. The highest crude protein content was 12.2%, with the fertilizer dose application of 700 kg ha-1 yr-1 in the proportion of 1 N to 0.8 of K2O, in other words, 388.89 kg ha-1 of N and 311.11 kg ha-1 of K2O and absence of irrigation. The lowest level of neutral detergent fiber was 60.7% with the application of the smallest dose of fertilizer and highest water depth. It was concluded in this study that there was an increase in plant height by increasing the fertilizer dose and water depth. The crude protein content increased 5.4% in the dry season, by increasing the fertilizer dose and water depth. In the dry season, there was an increase of NDF content by 4.5% by increasing the application of fertilizer and water depth.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study aimed to evaluate the influence of airflow (0.25, 0.50 and 0.75 L.L-1.min-1) and cycle time (10.45 h, 14.25 h and 17.35 h) on a sequencing batch reactor (SBR) performance in promoting nitrification and denitrification of poultry slaughterhouse wastewater. The operational stages included feeding, aerobic and anoxic reactions, sedimentation and discharge. SBR was operated in a laboratory scale with a working volume of 4 L, keeping 25% of biomass retained inside the reactor as inoculum for the next batch. In the anoxic stage, C: N ratio was maintained between 5 and 6 by adding cassava starch wastewater. A factorial design (22) with five repetitions was designed at the central point to evaluate the influence of cycle time and airflow on total inorganic nitrogen removal (N-NH4++N-NO2-+N-NO3-) and in the whole process (nitrification and denitrification). The highest total inorganic nitrogen removal (93.3%) was observed for airflow of 0.25 L.L-1.min‑1 and a cycle time of 14.25 h. At the end of the experiment, the sludge inside the reactor was characterized by fluorescent in situ hybridization (FISH), indicating the presence of ammonia and nitrite oxidizing bacteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The search for higher profitability in wheat crop with cost reduction technologies that may promote sustainability is an important matter in Brazilian agriculture. This study evaluated the profitability of no-tilled wheat, reducing nitrogen topdressing doses with the cultivation of green manure before the wheat crop. The experiment was carried out in Selvíria (MS), Brazil, in 2009/10. The experiment was arranged in a randomized block design with 36 treatments in splitplots and four replicates. The plots were formed by six types of green manure: Cajanus cajan L. BRS Mandarin, Crotalaria juncea L., Pennisetum americanum L. BRS 1501, fallow area and mixed cropping of Pennisetum americanum L. + Cajanus cajan L. and Pennisetum americanum L. + crotalaria which provided straw for no-tilled wheat in the winter, following the rice crop in the summer. The subplots were formed by six levels of topdressing nitrogen (0, 25, 50, 75, 100 and 125 kg N ha-1) using urea as a nitrogen source. The wheat grown after green manure in the previous winter crop, with no nitrogen topdressing and a rate of 25 kg ha-1 N, had more frequently production costs above the gross income. Wheat production cost after the mixed cropping Pennisetum americanum L. + Cajanus cajan L. and Pennisetum americanum L. + Crotalaria juncea L. from the previous winter crop, combined with nitrogen rates of 50 and 75 kg N ha-1, provided better profitability compared with the other green manures evaluated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biological nitrogen fixation is an alternative to supply the nitrogen needed for maize. The objective of this study was to evaluate the development and yield of maize in response to inoculation with Azospirillum associated with nitrogen fertilization. We conducted two field experiments in the summer harvest, the first in the 2000/2001 crop year in the region of Marechal Cândido Rondon, under conventional tillage, and second in the 2002/2003 agricultural year in the region of Cascavel, under no tillage. The experimental design in both experiments was a randomized complete block, with four replications, 2x2x2 factorial, with two levels of nitrogen at sowing (zero and 20 kg ha-1), two levels of inoculum (zero and 200 g ha-1) and two levels of nitrogen in topdressing (zero and 100 kg ha-1). There was evaluated the height of ear insertion, total plant height, leaf N content, shoot dry biomass and grain yield. The height of ear insertion and total plant height were not influenced by the factors under study. Nitrogen fertilization at sowing increased the leaf N content, causing the opposite effect when combined with inoculation. Inoculation with Azospirillum in the absence of nitrogen, provide productivity increases of 15.4% and 7.4% for 2000/2001 and 2002/2003 crops, respectively. The inoculation provided productivity similar to that obtained with 100 kg ha-1 in topdressing in crop 2000/2001, while in association with the topdressing, reduced productivity and shoot dry biomass in crop 2002/2003.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optimal dose of nitrogen (N) in potato crop depends on the production system. The objective of this study was to determine the optimal dose of N for the production of basic potato seed minitubers and evaluate the effect of N rates on physiological and nitrogen indices in the youngest fully developed leaf (fourth leaf) and in the oldest leaf of the plants at 60 days after planting. The experiment was conducted in a greenhouse at the Departamento de Fitotecnia da Universidade Federal de Viçosa. The treatments consisted of five N rates (0, 45, 90, 180 and 360 mg dm-3), with 10% of each dose applied at planting and the remainder through irrigation water, daily, for 30 days. The nitrogen rates positively influenced the physiological indices (length, width, leaf area, number of leaves, fresh mass and dry mass) and nitrogen (level and content of N and N-NO³ in the dry mass and SPAD) both in the fourth leaf and in the oldest leaf. Likewise, the N rates positively influenced the number and mass of harvested tubers. The largest number (5.44 tubers/plant) and the maximum mass of tubers (243.5 g/plant) were obtained with 360.0 and 332.9 mg N dm-3, respectively. Therefore, the mass and number of tubers were not optimized by the same N rate. The critical SPAD index was 38.8 in the fourth leaf, which was more sensitive to the effect of N rates than the oldest leaf.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Information concerning the response of coffee to organic fertilizers is scarce. This study evaluates the effect of different doses of compost and Crotalaria juncea L. on growth, production and nitrogen nutrition of coffee trees. The treatments consisted of compost at rates of 25, 50, 75 and 100% of the recommended fertilization, with or without the aerial part of C. juncea. C. juncea was grown with NH4-N (2% 15N) and applied to coffee. The use of C. juncea increased growth in height and diameter of the coffee canopy. In the first year, the percentage of N derived from C. juncea reached 8.5% at seven months and 4.1% at fifteen months after fertilization. In the second year, the percentage of N derived from C. juncea reached 17.9% N at the early harvest, five months after fertilization. Increased rates of compost increased pH , P , K , Ca , Mg , sum of bases , effective CEC, base saturation and organic matter and reduced potential acidity. 15N allowed the identification of the N contribution from C. juncea with percentage of leaf N derived from Crotalaria juncea from 9.2 to 17.9%.