36 resultados para Neuronal Nicotinic Receptor

em Scielo Saúde Pública - SP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Melatonin, the pineal hormone produced during the dark phase of the light-dark cycle, modulates neuronal acetylcholine receptors located presynaptically on nerve terminals of the rat vas deferens. Recently we showed the presence of high affinity nicotine-binding sites during the light phase, and low and high affinity binding sites during the dark phase. The appearance of the low affinity binding sites was due to the nocturnal melatonin surge and could be mimicked by exposure to melatonin in vitro. The aim of the present research was to identify the receptor subtypes responsible for the functional response during the light and the dark phase. The rank order of potency of agonists was dimethylphenylpiperazinium (DMPP) = cytisine > nicotine > carbachol and DMPP = nicotine = cytisine > carbachol, during the light and dark phase, respectively, due to an increase in apparent affinity for nicotine. Mecamylamine similarly blocked the DMPP response during the light and the dark phase, while the response to nicotine was more efficiently blocked during the light phase. In contrast, methyllycaconitine inhibited the nicotine-induced response only at 21:00 h. Since a7 nicotinic acetylcholine receptors (nAChRs) have low affinity for nicotine in binding assays, we suggest that a mixed population composed of a3ß4 - plus a7-bearing nAChR subtypes is present at night. This plasticity in receptor subtypes is probably driven by melatonin since nicotine-induced contraction in organs from animals sacrificed at 15:00 h and incubated with melatonin (100 pg/ml, 4 h) is not totally blocked by mecamylamine. Thus melatonin, by acting directly on the short adrenergic neurons that innervate the rat vas deferens, induces the appearance of the low affinity binding site, probably an a7 nAChR subtype.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Double-labeling immunohistochemical methods were used to investigate the occurrence of the alpha8 and alpha5 nicotinic receptor subunits in presumptive GABAergic neurons of the chick nervous system. Nicotinic receptor immunoreactivity was often found in cells exhibiting GABA-like immunoreactivity, especially in the visual system. The alpha8 subunit appeared to be present in presumptive GABAergic cells of the ventral lateral geniculate nucleus, nucleus of the basal optic root of the accessory optic system, and the optic tectum, among several other structures. The alpha5 subunit was also found in GABA-positive neurons, as observed in the lentiform nucleus of the mesencephalon and other pretectal nuclei. The numbers of alpha8- and alpha5-positive neurons that were also GABA-positive represented high percentages of the total number of neurons containing nicotinic receptor labeling in several brain areas, which indicates that most of the alpha8 and alpha5 nicotinic receptor subunits are present in GABAergic cells. Taken together with data from other studies, our results indicate an important role of the nicotinic acetylcholine receptors in the functional organization of GABAergic circuits in the visual system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Our objective was to investigate in conscious Sprague-Dawley (6-8 weeks, 250-300 g) female rats (N = 7 in each group) the effects of intracerebroventricularly (icv) injected adrenomedullin (ADM) on blood pressure and heart rate (HR), and to determine if ADM and calcitonin gene-related peptide (CGRP) receptors, peripheral V1 receptors or the central cholinergic system play roles in these cardiovascular effects. Blood pressure and HR were observed before and for 30 min following drug injections. The following results were obtained: 1) icv ADM (750 ng/10 µL) caused an increase in both blood pressure and HR (DMAP = 11.8 ± 2.3 mmHg and ΔHR = 39.7 ± 4.8 bpm). 2) Pretreatment with a CGRP receptor antagonist (CGRP8-37) and ADM receptor antagonist (ADM22-52) blocked the effect of central ADM on blood pressure and HR. 3) The nicotinic receptor antagonist mecamylamine (25 µg/10 µL, icv) and the muscarinic receptor antagonist atropine (5 µg/10 µL, icv) prevented the stimulating effect of ADM on blood pressure. The effect of ADM on HR was blocked only by atropine (5 µg/10 µL, icv). 4) The V1 receptor antagonist [β-mercapto-β-β-cyclopentamethylenepropionyl¹, O-me-Tyr²,Arg8]-vasopressin (V2255; 10 µg/kg), that was applied intravenously, prevented the effect of ADM on blood pressure and HR. This is the first study reporting the role of specific ADM and CGRP receptors, especially the role of nicotinic and muscarinic central cholinergic receptors and the role of peripheral V1 receptors in the increasing effects of icv ADM on blood pressure and HR.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nicotinic acetylcholine receptors (nAChRs) are ionotropic receptors comprised of a and ß subunits. These receptors are widely distributed in the central nervous system, and previous studies have revealed specific patterns of localization for some nAChR subunits in the vertebrate brain. In the present study we used immunohistochemical methods and monoclonal antibodies to localize the a2, a3, and a5 nAChR subunits in the chick mesencephalon and diencephalon. We observed a differential distribution of these three subunits in the chick brain, and showed that the somata and neuropil of many central structures contain the a5 nAChR subunit. The a2 and a3 subunits, on the other hand, exhibited a more restricted distribution than a5 and other subunits previously studied, namely a7, a8 and ß2. The patterns of distribution of the different nAChR subunits suggest that neurons in many brain structures may contain several subtypes of nAChRs and that in a few regions one particular subtype may determine the cholinergic nicotinic responses

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nitric oxide (NO) is a molecular messenger involved in several events of synaptic plasticity in the central nervous system. Ca2+ influx through the N-methyl-D-aspartate receptor (NMDAR) triggers the synthesis of NO by activating the enzyme neuronal nitric oxide synthase (nNOS) in postsynaptic densities. Therefore, NMDAR and nNOS are part of the intricate scenario of postsynaptic densities. In the present study, we hypothesized that the intracellular distribution of nNOS in the neurons of superior colliculus (SC) superficial layers is an NMDAR activity-dependent process. We used osmotic minipumps to promote chronic blockade of the receptors with the pharmacological agent MK-801 in the SC of 7 adult rats. The effective blockade of NMDAR was assessed by changes in the protein level of the immediate early gene NGFI-A, which is a well-known NMDAR activity-dependent expressing transcription factor. Upon chronic infusion of MK-801, a decrease of 47% in the number of cells expressing NGFI-A was observed in the SC of treated animals. Additionally, the filled dendritic extent by the histochemical product of nicotinamide adenine di-nucleotide phosphate diaphorase was reduced by 45% when compared to the contralateral SC of the same animals and by 64% when compared to the SC of control animals. We conclude that the proper intracellular localization of nNOS in the retinorecipient layers of SC depends on NMDAR activation. These results are consistent with the view that the participation of NO in the physiological and plastic events of the central nervous system might be closely related to an NMDAR activity-dependent function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prions are an unconventional form of infectious agents composed only of protein and involved in transmissible spongiform encephalopathies in humans and animals. The infectious particle is composed by PrPsc which is an isoform of a normal cellular glycosyl-phosphatidylinositol (GPI) anchored protein, PrPc, of unknown function. The two proteins differ only in conformation, PrPc is composed of 40% a helix while PrPsc has 60% ß-sheet and 20% a helix structure. The infection mechanism is trigged by interaction of PrPsc with cellular prion protein causing conversion of the latter's conformation. Therefore, the infection spreads because new PrPsc molecules are generated exponentially from the normal PrPc. The accumulation of insoluble PrPsc is probably one of the events that lead to neuronal death. Conflicting data in the literature showed that PrPc internalization is mediated either by clathrin-coated pits or by caveolae-like membranous domains. However, both pathways seem to require a third protein (a receptor or a prion-binding protein) either to make the connection between the GPI-anchored molecule to clathrin or to convert PrPc into PrPsc. We have recently characterized a 66-kDa membrane receptor which binds PrPc in vitro and in vivo and mediates the neurotoxicity of a human prion peptide. Therefore, the receptor should have a role in the pathogenesis of prion-related diseases and in the normal cellular process. Further work is necessary to clarify the events triggered by the association of PrPc/PrPsc with the receptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Normal central nervous system development relies on accurate intrinsic cellular programs as well as on extrinsic informative cues provided by extracellular molecules. Migration of neuronal progenitors from defined proliferative zones to their final location is a key event during embryonic and postnatal development. Extracellular matrix components play important roles in these processes, and interactions between neurons and extracellular matrix are fundamental for the normal development of the central nervous system. Guidance cues are provided by extracellular factors that orient neuronal migration. During cerebellar development, the extracellular matrix molecules laminin and fibronectin give support to neuronal precursor migration, while other molecules such as reelin, tenascin, and netrin orient their migration. Reelin and tenascin are extracellular matrix components that attract or repel neuronal precursors and axons during development through interaction with membrane receptors, and netrin associates with laminin and heparan sulfate proteoglycans, and binds to the extracellular matrix receptor integrins present on the neuronal surface. Altogether, the dynamic changes in the composition and distribution of extracellular matrix components provide external cues that direct neurons leaving their birthplaces to reach their correct final location. Understanding the molecular mechanisms that orient neurons to reach precisely their final location during development is fundamental to understand how neuronal misplacement leads to neurological diseases and eventually to find ways to treat them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Central angiotensin II (AngII) stimulates water and salt solution intake. Pretreatment with low-dose mineralocorticoid (DOCA) enhances this AngII-induced intake of salt solutions (the synergy theory) in Wistar and Sprague Dawley rats but not in Fischer rats. This response is mediated via the AT-1 receptor. Electrophysiological experiments using iontophoretic application of AngII and the AT-1 receptor-specific non-peptide antagonist losartan showed excitation of neurons in the preoptic/medial septum region of urethane-anesthetized male Wistar rats. DOCA pretreatment further enhances this neuronal excitation in response to AngII and reduces the responses to losartan. This generated the hypothesis that DOCA-enhanced AngII-induced neuronal excitation is the neural support for the synergy theory. AT-2 receptors modulate these intake responses depending on sodium in the diet, and diuretic-induced dehydration during pregnancy produces a higher salt intake in the offspring. AngII-induced salt and water intakes were tested in offspring from Sprague Dawley mothers with only 1.8% NaCl to drink in which half were treated with furosemide. The important observations were a) the AT-1 antagonist alone suppressed intakes in offspring from mothers not treated with furosemide, b) both AT-1 and AT-2 antagonists suppressed intakes in offspring from furosemide-treated mothers, and c) combined administration of AT-1 and AT-2 antagonists greatly suppressed water intake in offspring from mothers not treated with furosemide. These results suggest that AT-1 and AT-2 receptors have variable properties (receptor number and/or second messengers). Furthermore, the activity and function of these central AngII receptors depend on the background mineralocorticoid levels. The exact mechanism of this influence, however, remains to be determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hippocampal output is increased in affective disorders and is mediated by increased glutamatergic input via N-methyl-D-aspartate (NMDA) receptor and moderated by antidepressant treatment. Activation of NMDA receptors by glutamate evokes the release of nitric oxide (NO) by the activation of neuronal nitric oxide synthase (nNOS). The human hippocampus contains a high density of NMDA receptors and nNOS-expressing neurons suggesting the existence of an NMDA-NO transduction pathway which can be involved in the pathogenesis of affective disorders. We tested the hypothesis that nNOS expression is increased in the human hippocampus from affectively ill patients. Immunocytochemistry was used to demonstrate nNOS-expressing neurons in sections obtained from the Stanley Consortium postmortem brain collection from patients with major depression (MD, N = 15), bipolar disorder (BD, N = 15), and schizophrenia (N = 15) and from controls (N = 15). nNOS-immunoreactive (nNOS-IR) and Nissl-stained neurons were counted in entorhinal cortex, hippocampal CA1, CA2, CA3, and CA4 subfields, and subiculum. The numbers of Nissl-stained neurons were very similar in different diagnostic groups and correlated significantly with the number of nNOS-IR neurons. Both the MD and the BD groups had greater number of nNOS-IR neurons/400 µm² in CA1 (mean ± SEM: MD = 9.2 ± 0.6 and BD = 8.4 ± 0.6) and subiculum (BD = 6.7 ± 0.4) when compared to control group (6.6 ± 0.5) and this was significantly more marked in samples from the right hemisphere. These changes were specific to affective disorders since no changes were seen in the schizophrenic group (6.7 ± 0.8). The results support the current view of the NMDA-NO pathway as a target for the pathophysiology of affective disorders and antidepressant drug development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O receptor do ácido Hialurônico é uma glicoproteína da membrana plasmática, sendo o principal o CD44, e está expresso em vários tipos de células onde possui a função de adesão celular. OBJETIVO: Estudar a possibilidade de empregar o método imunohistoquímico para identificar a distribuição dos receptores de ácido hialurônico ao longo da prega vocal humana. MATERIAL E MÉTODOS: Foram ressecadas as pregas vocais normais de um indivíduo de 23 anos, sexo masculino, cor negra. As lâminas foram analisadas por meio de estudo histomorfométrico, comparando-se a intensidade das cores nas camadas superficial, média e profunda da lâmina própria. Nas lâminas silanizadas foi utilizado método imunohistoquímico, sendo avaliadas através de microscopia óptica com aumento 40 vezes, obtendo coloração marrom onde houve a reação com receptor para ácido hialurônico. RESULTADOS: Os achados imunohistoquímicos mostraram presença de receptores para ácido hialurônico no epitélio de cobertura da prega vocal tendo maior concentração na região central da prega vocal. CONCLUSÃO: A técnica de imunohistoquímica, utilizada para avaliar a distribuição dos receptores para ácido hialurônico na pregas vocais humanas, mostrou sua disposição em epitélio da prega vocal e predomínio no terço médio, em relação às demais regiões na prega vocal estudada.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ten male Wistar rats, chronically infected with Colombian, São Felipe (12SF) and Y strains of Trypanosoma cruzi and ten non-infected control animals were submitted to the bradycardia responsiveness test, an assessment of heart parasympathetic function, after phenylephrine injection. Six chagasic animals showed heart parasympathetic dysfuntion characterized by reduction in the index of bradycardia baroreflex responsiveness, as compared with the control group. Microscopic examination of the atrial heart ganglia of chagasic rats showed ganglionitis, but no statiscally significant reduction in the number of neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Revendo a literatura não encontramos estudos anatômicos dos gânglios intrapancreáticos na forma crônica da doença de Chagas; lesões dos mesmos poderiam explicar, ao menos em parte, os distúrbios funcionais do pâncreas exócrino e endócrino descritos nesta forma da doença. Decidimos então analisar morfologicamente tais gânglios. Para isso, estudamos segmentos transversais da cabeça, corpo e cauda do pâncreas de doze chagásicos crônicos, com idade média de 46,5 ± 9,1 anos, e quatorze controles, com idade média de 41,2 ± 11,0 anos. Os segmentos foram processados histologicamente e seccionados de forma seriada até o esgotamento, analisando-se os cortes múltiplos de sete. Para análise estatística, usamos o teste não-paramétrico de Mann-Whitney. Na cabeça do pâncreas, a contagem de neurônios teve média de 57,3 ± 50,8 para o grupo chagásico e 117,5 ± 99,0 para o grupo controle (p < 0,05); no corpo, 25,9 ± 19,4 para o grupo chagásico e 54,7 ± 47,8 para o controle (p < 0,05); na cauda, 23,4 ± 16,3 para o chagásico e 54,1 ± 29,2 para o controle (p < 0,01), sendo a contagem total de 106,6 ± 71,1 para o chagásico e 226,3 ± 156,5 para o controle (p < 0,01). Nossos achados nos permitiram concluir que: a) ocorreu despopulação neuronal estatisticamente significante no grupo chagásico em relação ao controle, em cada segmento pancreático analisado, bem como no órgão como um todo; b) 50% dos chagásicos tiveram número total de neurônios inferior ao menor número dos controles (80); c) 75% e 91,6% dos chagásicos tiveram número de neurônios inferior, respectivamente, à mediana (171) e à média (226) do grupo controle; d) assim, a despopulação neuronal pancreática foi frequente, porém não constante; e) o fator idade não pareceu ter sido o responsável pela despopulação neuronal dos chagásicos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Com o objetivo de se obter um modelo experimental que permitisse estabelecer a despopulação (desnervação) neuronal cardíaca procurou-se pesquisar o comportamento do sistema nervoso intracardíaco em hamsters cronicamente infectados com o T. cruzi. Para tal fim, realizaram-se contagens dos neurônios do plexo nervoso autonômico intracardíaco em hamsters inoculados com 35.000 formas sangüíneas de três cepas diferentes, sacrificados 5, 8 e 10 meses depois da infecção. Demonstrou-se, pela primeira vez, destruição neuronal significativa num modelo experimental, similar à que ocorre na doença de Chagas humana.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hanseníase é uma doença infectocontagiosa espectral que acompanha-se por uma série de eventos imunológicos desencadeados pela resposta do hospedeiro frente ao agente etiológico, o Mycobacterium leprae. Evidências sugerem que a indução e manutenção da resposta imune/inflamatória na hanseníase estão vinculadas a interações de múltiplas células e fatores solúveis, particularmente através da ação de citocinas. Nesse estudo, foram mensurados níveis de IL-1β e IL-1Ra de 37 casos novos de hanseníase acompanhados ao longo do tratamento e 30 controles sadios pelo teste ELISA. A coleta de sangue periférico foi realizada em quatro tempos para os casos de hanseníase (pré-tratamento com PQT, 2ª dose, 6ª dose e pós-PQT) e em único momento para os controles. Na comparação dos níveis das moléculas de casos no pré-PQT e controles, houve diferença estatisticamente significativa somente para IL-1β. Nossos resultados sugerem a participação dessa citocina no processo imune/inflamatório.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interleukin 8 (CXCL8) is an autocrine chemokine specific for the chemoattraction and activation of granulocytes, NKT cells and T lymphocytes. Patients with tuberculosis and latent Mycobacterium tuberculosis infection were assessed for the spontaneous expression of CXCR1 (CD128) and CXCR2 on lymphocytes and monocytes. Compared with ex vivo profiles, increased spontaneous CXCR2 expression and normal CXCR1 expression were found on lymphocytes in two out of 59 individuals. Monocytes showed normal ex vivo profiles for both receptors. After stimulation with purified protein derivative, the in vitro levels of CXCL8 were below the median levels of all patients with prior tuberculosis. Spontaneous CXCR2 modulation did not cause notable variation in the in vitro levels of CXCL8.