3 resultados para Neuromodulation
em Scielo Saúde Pública - SP
Resumo:
The discovery of non-adrenergic, non-cholinergic neurotransmission in the gut and bladder in the early 1960's is described as well as the identification of adenosine 5'-triphosphate (ATP) as a transmitter in these nerves in the early 1970's. The concept of purinergic cotransmission was formulated in 1976 and it is now recognized that ATP is a cotransmitter in all nerves in the peripheral and central nervous systems. Two families of receptors to purines were recognized in 1978, P1 (adenosine) receptors and P2 receptors sensitive to ATP and adenosine diphosphate (ADP). Cloning of these receptors in the early 1990's was a turning point in the acceptance of the purinergic signalling hypothesis and there are currently 4 subtypes of P1 receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of G protein-coupled receptors. Both short-term purinergic signalling in neurotransmission, neuromodulation and neurosecretion and long-term (trophic) purinergic signalling of cell proliferation, differentiation, motility, death in development and regeneration are recognized. There is now much known about the mechanisms underlying ATP release and extracellular breakdown by ecto-nucleotidases. The recent emphasis on purinergic neuropathology is discussed, including changes in purinergic cotransmission in development and ageing and in bladder diseases and hypertension. The involvement of neuron-glial cell interactions in various diseases of the central nervous system, including neuropathic pain, trauma and ischemia, neurodegenerative diseases, neuropsychiatric disorders and epilepsy are also considered.
Resumo:
Patients with clinical diseases often present psychiatric conditions whose pharmacological treatment is hampered due to hazardous interactions with the clinical treatment and/or disease. This is particularly relevant for major depressive disorder, the most common psychiatric disorder in the general hospital. In this context, nonpharmacological interventions could be useful therapies; and, among those, noninvasive brain stimulation (NIBS) might be an interesting option. The main methods of NIBS are repetitive transcranial magnetic stimulation (rTMS), which was recently approved as a nonresearch treatment for some psychiatric conditions, and transcranial direct current stimulation (tDCS), a technique that is currently limited to research scenarios but has shown promising results. Therefore, our aim was to review the main medical conditions associated with high depression rates, the main obstacles for depression treatment, and whether these therapies could be a useful intervention for such conditions. We found that depression is an important and prevalent comorbidity in a variety of diseases such as epilepsy, stroke, Parkinson's disease, myocardial infarction, cancer, and in other conditions such as pregnancy and in patients without enteral access. We found that treatment of depression is often suboptimal within the above contexts and that rTMS and tDCS therapies have been insufficiently appraised. We discuss whether rTMS and tDCS could have a significant impact in treating depression that develops within a clinical context, considering its unique characteristics such as the absence of pharmacological interactions, the use of a nonenteral route, and as an augmentation therapy for antidepressants.
Resumo:
Studies of body volume expansion have indicated that lesions of the anteroventral third ventricle and median eminence block the release of atrial natriuretic peptide (ANP) into the circulation. Detailed analysis of the lesions showed that activation of oxytocin (OT)-ergic neurons is responsible for ANP release, and it has become clear that activation of neuronal circuitry elicits OT secretion into the circulation, activating atrial OT receptors and ANP release from the heart. Subsequently, we have uncovered the entire functional OT system in the rat and the human heart. An abundance of OT has been observed in the early development of the fetal heart, and the capacity of OT to generate cardiomyocytes (CMs) has been demonstrated in various types of stem cells. OT treatment of mesenchymal stem cells stimulates paracrine factors beneficial for cardioprotection. Cardiovascular actions of OT include: i) lowering blood pressure, ii) negative inotropic and chronotropic effects, iii) parasympathetic neuromodulation, iv) vasodilatation, v) anti-inflammatory activity, vi) antioxidant activity, and vii) metabolic effects. OT actions are mediated by nitric oxide and ANP. The beneficial actions of OT may include the increase in glucose uptake by CMs and stem cells, reduction in CM hypertrophy, oxidative stress, and mitochondrial protection of several cell types. In experimentally induced myocardial infarction in rats, continuous in vivo OT delivery improves cardiac healing and cardiac work, reduces inflammation, and stimulates angiogenesis. Because OT plays anti-inflammatory and cardioprotective roles and improves vascular and metabolic functions, it demonstrates potential for therapeutic use in various pathologic conditions.