60 resultados para Neural algorithm
em Scielo Saúde Pública - SP
Resumo:
Soil infiltration is a key link of the natural water cycle process. Studies on soil permeability are conducive for water resources assessment and estimation, runoff regulation and management, soil erosion modeling, nonpoint and point source pollution of farmland, among other aspects. The unequal influence of rainfall duration, rainfall intensity, antecedent soil moisture, vegetation cover, vegetation type, and slope gradient on soil cumulative infiltration was studied under simulated rainfall and different underlying surfaces. We established a six factor-model of soil cumulative infiltration by the improved back propagation (BP)-based artificial neural network algorithm with a momentum term and self-adjusting learning rate. Compared to the multiple nonlinear regression method, the stability and accuracy of the improved BP algorithm was better. Based on the improved BP model, the sensitive index of these six factors on soil cumulative infiltration was investigated. Secondly, the grey relational analysis method was used to individually study grey correlations among these six factors and soil cumulative infiltration. The results of the two methods were very similar. Rainfall duration was the most influential factor, followed by vegetation cover, vegetation type, rainfall intensity and antecedent soil moisture. The effect of slope gradient on soil cumulative infiltration was not significant.
Resumo:
Soil surveys are the main source of spatial information on soils and have a range of different applications, mainly in agriculture. The continuity of this activity has however been severely compromised, mainly due to a lack of governmental funding. The purpose of this study was to evaluate the feasibility of two different classifiers (artificial neural networks and a maximum likelihood algorithm) in the prediction of soil classes in the northwest of the state of Rio de Janeiro. Terrain attributes such as elevation, slope, aspect, plan curvature and compound topographic index (CTI) and indices of clay minerals, iron oxide and Normalized Difference Vegetation Index (NDVI), derived from Landsat 7 ETM+ sensor imagery, were used as discriminating variables. The two classifiers were trained and validated for each soil class using 300 and 150 samples respectively, representing the characteristics of these classes in terms of the discriminating variables. According to the statistical tests, the accuracy of the classifier based on artificial neural networks (ANNs) was greater than of the classic Maximum Likelihood Classifier (MLC). Comparing the results with 126 points of reference showed that the resulting ANN map (73.81 %) was superior to the MLC map (57.94 %). The main errors when using the two classifiers were caused by: a) the geological heterogeneity of the area coupled with problems related to the geological map; b) the depth of lithic contact and/or rock exposure, and c) problems with the environmental correlation model used due to the polygenetic nature of the soils. This study confirms that the use of terrain attributes together with remote sensing data by an ANN approach can be a tool to facilitate soil mapping in Brazil, primarily due to the availability of low-cost remote sensing data and the ease by which terrain attributes can be obtained.
Resumo:
Soil information is needed for managing the agricultural environment. The aim of this study was to apply artificial neural networks (ANNs) for the prediction of soil classes using orbital remote sensing products, terrain attributes derived from a digital elevation model and local geology information as data sources. This approach to digital soil mapping was evaluated in an area with a high degree of lithologic diversity in the Serra do Mar. The neural network simulator used in this study was JavaNNS and the backpropagation learning algorithm. For soil class prediction, different combinations of the selected discriminant variables were tested: elevation, declivity, aspect, curvature, curvature plan, curvature profile, topographic index, solar radiation, LS topographic factor, local geology information, and clay mineral indices, iron oxides and the normalized difference vegetation index (NDVI) derived from an image of a Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor. With the tested sets, best results were obtained when all discriminant variables were associated with geological information (overall accuracy 93.2 - 95.6 %, Kappa index 0.924 - 0.951, for set 13). Excluding the variable profile curvature (set 12), overall accuracy ranged from 93.9 to 95.4 % and the Kappa index from 0.932 to 0.948. The maps based on the neural network classifier were consistent and similar to conventional soil maps drawn for the study area, although with more spatial details. The results show the potential of ANNs for soil class prediction in mountainous areas with lithological diversity.
Resumo:
Visible and near infrared (vis-NIR) spectroscopy is widely used to detect soil properties. The objective of this study is to evaluate the combined effect of moisture content (MC) and the modeling algorithm on prediction of soil organic carbon (SOC) and pH. Partial least squares (PLS) and the Artificial neural network (ANN) for modeling of SOC and pH at different MC levels were compared in terms of efficiency in prediction of regression. A total of 270 soil samples were used. Before spectral measurement, dry soil samples were weighed to determine the amount of water to be added by weight to achieve the specified gravimetric MC levels of 5, 10, 15, 20, and 25 %. A fiber-optic vis-NIR spectrophotometer (350-2500 nm) was used to measure spectra of soil samples in the diffuse reflectance mode. Spectra preprocessing and PLS regression were carried using Unscrambler® software. Statistica® software was used for ANN modeling. The best prediction result for SOC was obtained using the ANN (RMSEP = 0.82 % and RPD = 4.23) for soil samples with 25 % MC. The best prediction results for pH were obtained with PLS for dry soil samples (RMSEP = 0.65 % and RPD = 1.68) and soil samples with 10 % MC (RMSEP = 0.61 % and RPD = 1.71). Whereas the ANN showed better performance for SOC prediction at all MC levels, PLS showed better predictive accuracy of pH at all MC levels except for 25 % MC. Therefore, based on the data set used in the current study, the ANN is recommended for the analyses of SOC at all MC levels, whereas PLS is recommended for the analysis of pH at MC levels below 20 %.
Resumo:
This study evaluates the application of an intelligent hybrid system for time-series forecasting of atmospheric pollutant concentration levels. The proposed method consists of an artificial neural network combined with a particle swarm optimization algorithm. The method not only searches relevant time lags for the correct characterization of the time series, but also determines the best neural network architecture. An experimental analysis is performed using four real time series and the results are shown in terms of six performance measures. The experimental results demonstrate that the proposed methodology achieves a fair prediction of the presented pollutant time series by using compact networks.
Resumo:
The present study describes an auxiliary tool in the diagnosis of left ventricular (LV) segmental wall motion (WM) abnormalities based on color-coded echocardiographic WM images. An artificial neural network (ANN) was developed and validated for grading LV segmental WM using data from color kinesis (CK) images, a technique developed to display the timing and magnitude of global and regional WM in real time. We evaluated 21 normal subjects and 20 patients with LVWM abnormalities revealed by two-dimensional echocardiography. CK images were obtained in two sets of viewing planes. A method was developed to analyze CK images, providing quantitation of fractional area change in each of the 16 LV segments. Two experienced observers analyzed LVWM from two-dimensional images and scored them as: 1) normal, 2) mild hypokinesia, 3) moderate hypokinesia, 4) severe hypokinesia, 5) akinesia, and 6) dyskinesia. Based on expert analysis of 10 normal subjects and 10 patients, we trained a multilayer perceptron ANN using a back-propagation algorithm to provide automated grading of LVWM, and this ANN was then tested in the remaining subjects. Excellent concordance between expert and ANN analysis was shown by ROC curve analysis, with measured area under the curve of 0.975. An excellent correlation was also obtained for global LV segmental WM index by expert and ANN analysis (R² = 0.99). In conclusion, ANN showed high accuracy for automated semi-quantitative grading of WM based on CK images. This technique can be an important aid, improving diagnostic accuracy and reducing inter-observer variability in scoring segmental LVWM.
Resumo:
In the present study, we modeled a reaching task as a two-link mechanism. The upper arm and forearm motion trajectories during vertical arm movements were estimated from the measured angular accelerations with dual-axis accelerometers. A data set of reaching synergies from able-bodied individuals was used to train a radial basis function artificial neural network with upper arm/forearm tangential angular accelerations. The trained radial basis function artificial neural network for the specific movements predicted forearm motion from new upper arm trajectories with high correlation (mean, 0.9149-0.941). For all other movements, prediction was low (range, 0.0316-0.8302). Results suggest that the proposed algorithm is successful in generalization over similar motions and subjects. Such networks may be used as a high-level controller that could predict forearm kinematics from voluntary movements of the upper arm. This methodology is suitable for restoring the upper limb functions of individuals with motor disabilities of the forearm, but not of the upper arm. The developed control paradigm is applicable to upper-limb orthotic systems employing functional electrical stimulation. The proposed approach is of great significance particularly for humans with spinal cord injuries in a free-living environment. The implication of a measurement system with dual-axis accelerometers, developed for this study, is further seen in the evaluation of movement during the course of rehabilitation. For this purpose, training-related changes in synergies apparent from movement kinematics during rehabilitation would characterize the extent and the course of recovery. As such, a simple system using this methodology is of particular importance for stroke patients. The results underlie the important issue of upper-limb coordination.
Resumo:
In this study, the effects of hot-air drying conditions on color, water holding capacity, and total phenolic content of dried apple were investigated using artificial neural network as an intelligent modeling system. After that, a genetic algorithm was used to optimize the drying conditions. Apples were dried at different temperatures (40, 60, and 80 °C) and at three air flow-rates (0.5, 1, and 1.5 m/s). Applying the leave-one-out cross validation methodology, simulated and experimental data were in good agreement presenting an error < 2.4 %. Quality index optimal values were found at 62.9 °C and 1.0 m/s using genetic algorithm.
Resumo:
The objective of this study was to predict by means of Artificial Neural Network (ANN), multilayer perceptrons, the texture attributes of light cheesecurds perceived by trained judges based on instrumental texture measurements. Inputs to the network were the instrumental texture measurements of light cheesecurd (imitative and fundamental parameters). Output variables were the sensory attributes consistency and spreadability. Nine light cheesecurd formulations composed of different combinations of fat and water were evaluated. The measurements obtained by the instrumental and sensory analyses of these formulations constituted the data set used for training and validation of the network. Network training was performed using a back-propagation algorithm. The network architecture selected was composed of 8-3-9-2 neurons in its layers, which quickly and accurately predicted the sensory texture attributes studied, showing a high correlation between the predicted and experimental values for the validation data set and excellent generalization ability, with a validation RMSE of 0.0506.
Resumo:
A possibilidade de realizar o implante coclear em crianças pequenas torna necessário o uso de medidas objetivas para auxiliar a programação do processador de fala. Telemetria é a propriedade que permite, no Nucleus 24®, a obtenção do potencial de ação composto evocado do VIII par (EAP) utilizando o implante como instrumento de estimulação e gravação para o estudo das propriedades neurais remanescentes. OBJETIVO: Descrever a utilização do sistema de telemetria para a gravação do EAP, caracterizando as respostas obtidas e a sua prevalência na condição intraoperatória. FORMA DE ESTUDO: clínico com coorte transversal. MATERIAL E MÉTODO: Medidas das impedâncias dos eletrodos e do EAP em um grupo de 17 indivíduos usuários do implante Nucleus 24® durante a cirurgia. Análise das respostas de acordo com a etiologia, o tempo de duração da surdez e a posição dos eletrodos dentro da cóclea. RESULTADOS: Maior prevalência nos eletrodos apicais e limiares mais elevados nos casos de meningite e otosclerose. CONCLUSÃO: A telemetria é eficiente para a verificação da integridade dos eletrodos na condição intraoperatória e para a gravação do EAP, apresentando alta prevalência na população estudada.
Resumo:
O Potencial de Ação Composto Evocado Eletricamente reflete a atividade do nervo auditivo, podendo ser registrado através dos eletrodos do implante coclear. A determinação dos elementos neurais estimuláveis pode contribuir para explicar a variabilidade de desempenho entre indivíduos implantados. OBJETIVO: Comparar o desempenho nos testes de percepção da fala entre pacientes que apresentaram e que não apresentaram potencial de ação composto evocado eletricamente no momento intra-operatório. MATERIAL E MÉTODO: Estudo prospectivo no qual 100 indivíduos usuários do implante coclear Nucleus 24 foram divididos em dois grupos de acordo com a presença ou ausência do potencial de ação intra-operatório. Após 6 meses de uso do dispositivo, os resultados dos testes de percepção de fala foram comparados entre os grupos. RESULTADOS: O potencial foi observado em 72% dos pacientes. A percepção no teste de frases em formato aberto foi melhor nos indivíduos com presença de potencial (média 82,8% contra 41,0%, p = 0,005). Houve associação entre ausência do potencial e etiologia da surdez por meningite. CONCLUSÃO: Ausência de potencial neural intraoperatório esteve associada ao pior desempenho na percepção da fala e à etiologia da surdez por meningite. Por outro lado, a presença do potencial de ação intraoperatório sugere ótimo prognóstico.
Perda auditiva sensório-neural na otite média crônica supurativa em pacientes com e sem colesteatoma
Resumo:
Perda auditiva sensório-neural (PASN) relacionada a otite média crônica supurativa (OMCS) foi estudada para esclarecer a participação do colesteatoma nesse contexto. OBJETIVO: Avaliar ocorrência de PASN na OMCS, correlacionando com colesteatoma, duração da doença e idade. CASUÍSTICA E MÉTODOS: Estudo retrospectivo de 115 pacientes com OMCS com e sem colesteatoma submetidos à cirurgia. Incluíram-se pacientes com doença unilateral, orelha contralateral normal e idade inferior a 60 anos. RESULTADOS: Idade média foi de 26 anos, sendo 58 homens e 57 mulheres. Tempo médio de duração da doença otológica de 12,4 anos. Limiar auditivo médio foi de 40 dB na orelha com OMCS e 22dB na orelha normal (P=0,002). Observou-se colesteatoma em 78 dos 115 casos. Na orelha com OMCS, ocorreram 15 (13%) casos de PASN, sendo 7 associadas à colesteatoma e 8 não associadas. Seis casos de PASN foram severa/profunda, correlacionando-se com idade ajustada (P=0,003), ausência de colesteatoma (P=0,01), mas não com duração da doença (P=0,458). CONCLUSÃO: PASN ocorreu em 13% dos pacientes com OMCS, correlacionando-se com o aumento da idade, mas não com a presença de colesteatoma ou com maior duração da doença otológica.
Resumo:
OBJETIVO: Avaliar as redes neurais recorrentes enquanto técnica preditiva para séries temporais em saúde. MÉTODOS: O estudo foi realizado durante uma epidemia de cólera ocorrida no Estado do Ceará, em 1993 e 1994, a partir da sobremortalidade tendo como causa básica as infecções intestinais mal definidas (CID-9). O número mensal de óbitos por essa causa, referente ao período de 1979 a 1995 no Estado do Ceará, foram obtidos do Sistema de Informação de Mortalidade (SIM) do Ministério da Saúde. Estruturou-se uma rede com dois neurônios na camada de entrada, 12 na camada oculta, um neurônio na camada de saída e um na camada de memória. Todas as funções de ativação eram a função logística. O treinamento foi realizado pelo método de backpropagation, com taxa de aprendizado de 0,01 e momentum de 0,9, com dados de janeiro de 1979 a junho de 1991. O critério para fim do treinamento foi atingir 22.000 epochs. Compararam-se os resultados com os de um modelo de regressão binomial negativa. RESULTADOS: A predição da rede neural a médio prazo foi adequada, em dezembro de 1993 e novembro e dezembro de 1994. O número de óbitos registrados foi superior ao limite do intervalo de confiança. Já o modelo regressivo detectou sobremortalidade a partir de março de 1992. CONCLUSÕES: A rede neural se mostrou capaz de predição, principalmente no início do período, como também ao detectar uma alteração concomitante e posterior à ocorrência da epidemia de cólera. No entanto, foi menos precisa do que o modelo de regressão binomial, que se mostrou mais sensível para detectar aberrações concomitantes à circulação da cólera.
Resumo:
OBJETIVO:Analisar o efeito de alimentos fortificados com ácido fólico na prevalência de defeitos de fechamento do tubo neural entre nascidos vivos. MÉTODOS: Estudo longitudinal de nascidos vivos do município de Recife (PE) entre 2000 e 2006. Os dados pesquisados foram obtidos do Sistema Nacional de Informações de Nascidos Vivos. Os defeitos de fechamento do tubo neural foram definidos de acordo com o Código Internacional de Doenças-10ª Revisão: anencefalia, encefalocele e espinha bífida. Compararam-se as prevalências nos períodos anterior (2000-2004) e posterior (2005-2006) ao período mandatório à fortificação. Analisou-se a tendência temporal das prevalências trimestrais de defeitos do fechamento do tubo neural pelos testes de Mann-Kendall e Sen's Slope. RESULTADOS: Não se identificou tendência de redução na ocorrência do desfecho (Teste de Mann-Kendall; p= 0,270; Sen's Slope =-0,008) no período estudado. Não houve diferença estatisticamente significativa entre as prevalências de defeitos do fechamento do tubo neural nos períodos anterior e posterior à fortificação dos alimentos com acido fólico de acordo com as características maternas. CONCLUSÕES: Embora não tenha sido observada redução dos defeitos do fechamento do tubo neural após o período mandatório de fortificação de alimentos com ácido fólico, os resultados encontrados não permitem descartar o seu benefício na prevenção desta malformação. São necessários estudos avaliando maior período e considerando o nível de consumo dos produtos fortificados pelas mulheres em idade fértil.
Resumo:
Classical serological screening assays for Chagas' disease are time consuming and subjective. The objective of the present work is to evaluate the enzyme immuno-assay (ELISA) methodology and to propose an algorithm for blood banks to be applied to Chagas' disease. Seven thousand, nine hundred and ninety nine blood donor samples were screened by both reverse passive hemagglutination (RPHA) and indirect immunofluorescence assay (IFA). Samples reactive on RPHA and/or IFA were submitted to supplementary RPHA, IFA and complement fixation (CFA) tests. This strategy allowed us to create a panel of 60 samples to evaluate the ELISA methodology from 3 different manufacturers. The sensitivity of the screening by IFA and the 3 different ELISA's was 100%. The specificity was better on ELISA methodology. For Chagas disease, ELISA seems to be the best test for blood donor screening, because it showed high sensitivity and specificity, it is not subjective and can be automated. Therefore, it was possible to propose an algorithm to screen samples and confirm donor results at the blood bank.