10 resultados para National System of Science and Technology
em Scielo Saúde Pública - SP
Resumo:
An analysis of Brazilian federal expenditures in science and technology is presented is this study. The 1990-1999 data were compiled from records provided by two federal agencies (MCT and CNPq) responsible for managing most of the national budget related to these activities. The results indicate that the federal investments in Brazilian science and technology stagnated during the last decade (US$ 2.32 billion in 1990, US$ 2.39 billion in 1996, and US$ 2.36 billion in 1999). In contrast, a great increase in private investments in research was acknowledged both by industry and by the government during the same period, from US$ 2.12 to US$ 4.64 billion. However, this investment did not result in an increase in invention patents granted to residents (492 in 1990 and only 232 in 1997) or in a reduction of patent costs. Despite this unfavorable scenario, the number of graduate programs in the country has increased two-fold in the last decade and the contribution of Brazilians to the database of the Institute for Scientific Information has increased 4.7-fold from 1990 (2,725 scientific publications) to 2000 (12,686 scientific publications). Unstable federal resources for science, together with the poor returns of private resources in terms of developing new technologies, may jeopardize the future of Brazilian technological development.
Resumo:
Conventional wisdom usually underestimates the important role of public research institutes and universities in successful cases of Brazilian economy. History of science and technology institutions shows a long-term process of formation of these institutions and their interactions with industrial firms, agricultural producers or society. This paper investigates historical roots of successful cases of Brazil. First, we present the late onset of National Innovation System (NSI) institutions and waves of institutional formation in Brazil. Second, we describe the history of three selected successful cases, which spans from a low-tech sector (agriculture), a medium-tech sector (steel and special metal alloys), to a high-tech sector (aircraft). These findings present new challenges for present-day developmental policies.
Resumo:
This paper presents the main subjects discussed in the round-table: "Educational Base for Biomedical Research", during the International Symposium on Biomedical Research in the 21st century; two main aspects will be focused: (1) the importance of popularizing science in order to stimulate comprehension of the scientific process and progress, their critical thinking, citizenship and social commitment, mainly in the biomedical area, considering the new advances of knowledge and the resulting technology; (2) the importance to stimulate genuine scientific vocation among young people, by giving them opportunity to early experience scientific environment, throught the hands of well prepared master in a humanistic atmosphere.
Resumo:
The marine environment is certainly one of the most complex systems to study, not only because of the challenges posed by the nature of the waters, but especially due to the interactions of physical, chemical and biological processes that control the cycles of the elements. Together with analytical chemists, oceanographers have been making a great effort in the advancement of knowledge of the distribution patterns of trace elements and processes that determine their biogeochemical cycles and influences on the climate of the planet. The international academic community is now in prime position to perform the first study on a global scale for observation of trace elements and their isotopes in the marine environment (GEOTRACES) and to evaluate the effects of major global changes associated with the influences of megacities distributed around the globe. This action can only be performed due to the development of highly sensitive detection methods and the use of clean sampling and handling techniques, together with a joint international program working toward the clear objective of expanding the frontiers of the biogeochemistry of the oceans and related topics, including climate change issues and ocean acidification associated with alterations in the carbon cycle. It is expected that the oceanographic data produced this coming decade will allow a better understanding of biogeochemical cycles, and especially the assessment of changes in trace elements and contaminants in the oceans due to anthropogenic influences, as well as its effects on ecosystems and climate. Computational models are to be constructed to simulate the conditions and processes of the modern oceans and to allow predictions. The environmental changes arising from human activity since the 18th century (also called the Anthropocene) have made the Earth System even more complex. Anthropogenic activities have altered both terrestrial and marine ecosystems, and the legacy of these impacts in the oceans include: a) pollution of the marine environment by solid waste, including plastics; b) pollution by chemical and medical (including those for veterinary use) substances such as hormones, antibiotics, legal and illegal drugs, leading to possible endocrine disruption of marine organisms; and c) ocean acidification, the collateral effect of anthropogenic emissions of CO2 into the atmosphere, irreversible in the human life time scale. Unfortunately, the anthropogenic alteration of the hydrosphere due to inputs of plastics, metal, hydrocarbons, contaminants of emerging concern and even with formerly "exotic" trace elements, such us rare earth elements is likely to accelerate in the near future. These emerging contaminants would likely soon present difficulties for studies in pristine environments. All this knowledge brings with it a great responsibility: helping to envisage viable adaptation and mitigation solutions to the problems identified. The greatest challenge faced by Brazil is currently to create a framework project to develop education, science and technology applied to oceanography and related areas. This framework would strengthen the present working groups and enhance capacity building, allowing a broader Brazilian participation in joint international actions and scientific programs. Recently, the establishment of the National Institutes of Science and Technology (INCTs) for marine science, and the creation of the National Institute of Oceanographic and Hydrological Research represent an exemplary start. However, the participation of the Brazilian academic community in the latest assaults on the frontier of chemical oceanography is extremely limited, largely due to: i. absence of physical infrastructure for the preparation and processing of field samples at ultra-trace level; ii. limited access to oceanographic cruises, due to the small number of Brazilian vessels and/or absence of "clean" laboratories on board; iii. restricted international cooperation; iv. limited analytical capacity of Brazilian institutions for the analysis of trace elements in seawater; v. high cost of ultrapure reagents associated with processing a large number of samples, and vi. lack of qualified technical staff. Advances in knowledge, analytic capabilities and the increasing availability of analytical resources available today offer favorable conditions for chemical oceanography to grow. The Brazilian academic community is maturing and willing to play a role in strengthening the marine science research programs by connecting them with educational and technological initiatives in order to preserve the oceans and to promote the development of society.
Resumo:
In 1995, a pioneering MD-PhD program was initiated in Brazil for the training of medical scientists in experimental sciences at the Federal University of Rio de Janeiro. The program’s aim was achieved with respect to publication of theses in the form of papers with international visibility and also in terms of fostering the scientific careers of the graduates. The expansion of this type of program is one of the strategies for improving the preparation of biomedical researchers in Brazil. A noteworthy absence of interest in carrying out clinical research limits the ability of young Brazilian physicians to solve biomedical problems. To understand the students’ views of science, we used qualitative and quantitative triangulation methods, as well as participant observation to evaluate the students’ concepts of science and common sense. Subjective aspects were clearly less evident in their concepts of science. There was a strong concern about "methodology", "truth" and "usefulness". "Intuition", "creativity" and "curiosity" were the least mentioned thematic categories. Students recognized the value of intuition when it appeared as an explicit option but they did not refer to it spontaneously. Common sense was associated with "consensus", "opinion" and ideas that "require scientific validation". Such observations indicate that MD-PhD students share with their senior academic colleagues the same reluctance to consider common sense as a valid adjunct for the solution of scientific problems. Overcoming this difficulty may be an important step toward stimulating the interest of physicians in pursuing experimental research.