14 resultados para Nano Composites, Carbon Nanotube, Strain Sensor
em Scielo Saúde Pública - SP
Resumo:
Carbon nanotubes are highly versatile materials; new applications using them are continuously being developed. Special attention is being dedicated to the possible use of multiwalled carbon nanotubes in biomaterials contacting with bone. However, carbon nanotubes are also controversial in regards to effects exerted on living organisms. Carbon nanotubes can be used to improve the tribological properties of polymer/composite materials. Ultrahigh molecular weight polyethylene (UHMWPE) is a polymer widely used in orthopedic applications that imply wear and particle generation. We describe here the response of human osteoblast-like MG63 cells after 6 days of culture in contact with artificially generated particles from both UHMWPE polymer and multiwalled carbon nanotubes (MWCNT)/UHMWPE nanocomposites. This novel composite has superior wear behavior, having thus the potential to reduce the number of revision hip arthroplasty surgeries required by wear failure of acetabular cups and diminish particle-induced osteolysis. The results of an in vitro study of viability and proliferation and interleukin-6 (IL-6) production suggest good cytocompatibility, similar to that of conventional UHMWPE (WST-1 assay results are reported as percentage of control ± SD: UHMWPE = 96.19 ± 7.92, MWCNT/UHMWPE = 97.92 ± 8.29%; total protein: control = 139.73 ± 10.78, UHMWPE = 137.07 ± 6.17, MWCNT/UHMWPE = 163.29 ± 11.81 µg/mL; IL-6: control = 90.93 ± 10.30, UHMWPE = 92.52 ± 11.02, MWCNT/UHMWPE = 108.99 ± 9.90 pg/mL). Standard cell culture conditions were considered as control. These results, especially the absence of significant elevation in the osteolysis inductor IL-6 values, reinforce the potential of this superior wear-resistant composite for future orthopedic applications, when compared to traditional UHMWPE.
Resumo:
Carbon monoxide was detected and determined by a piezoelectric quartz crystal sensor coated with nickel(II)-phthalocyanine 50 % (v/v) solution in glycerine. Studies on the effect of temperature, flow rate, and some possible interferents were carried out. Calibration curves, sensor stability (lifetime) and the precision of measurements were also verified. The resulting selectivity is probably due to the coordinative binding between the electronically unsatured metal complexes and the analyte. The analytical curve is linear in the concentration range 0.10 to 1.0 % (v/v).
Resumo:
Polyurethane/multi-walled carbon nanotube (MWCNT) nanocomposites have been prepared with nanotube concentrations between 0.01 wt% and 1 wt%. MWCNT as-synthesized samples with ~74 nm diameter and ~7 μm length were introduced by solution processing in the polyurethane matrix. Scanning electron microscopy (SEM) images demonstrated good dispersion and adhesion of the CNTs to the polymeric matrix. The C=O stretching band showed evidence of perturbation of the hydrogen interaction between urethanic moieties in the nanocomposites as compared to pure TPU. Differential scanning calorimetry and positron anihilation lifetime spectroscopy measurements allowed the detection of glass transition displacement with carbon nanotube addition. Furthermore, the electrical conductivity of the nanocomposites was significantly increased with the addition of CNT.
pH effect on the synthesis of magnetite nanoparticles by the chemical reduction-precipitation method
Resumo:
This work aimed at putting in evidence the influence of the pH on the chemical nature and properties of the synthesized magnetic nanocomposites. Saturation magnetization measurements evidenced a marked difference of the magnetic behavior of samples, depending on the final pH of the solution after reaction. Magnetite and maghemite in different proportions were the main magnetic iron oxides actually identified. Synthesis with final pH between 9.7-10.6 produced nearly pure magnetite with little or no other associated iron oxide. Under other synthetic conditions, goethite also appears in proportions that depended upon the pH of the synthesis medium.
Resumo:
There are many controversies regarding the cyto- and genotoxicity of carbon nanotubes (CNTs). In this work, we discuss that many of the incongruous arguments are probably associated with the poor physical-chemical characterization of the CNT samples used in many publications. This manuscript presents examples of carbon nanostructures observed under high resolution electron microscopy that can be found in typical CNT samples, and shows which roles in cyto- and genotoxicity need to be better investigated. Issues concerning chemical treatment are addressed and examples of misunderstandings that can occur during the studies of cyto- and genotoxicity of CNT samples are given.
Resumo:
The dispersion of carbon nanotubes in water for their utilization in nanoscale devices is a challenging task. Comparative studies on interaction and dispersion of multi-wall carbon nanotubes (MWNT) using two different surfactants (sodium dodecyl sulfate, SDS, and polyoxyethylenesorbitanmonooleate, Tween 80) are presented. The interaction between carbon nanotubes and surfactants was studied by tensiometry, conductivimetry, and fluorimetry. The dispersions of MWNT in surfactants were characterized using a UV-vis spectrophotometer. For effective dispersion, the minimum weight ratio of MWNT to surfactant was 1:41 and 1:3 for SDS and Tween 80, respectively.
Resumo:
The synthesis and characterization of different platinum nanoparticle/carbon nanotube nanocomposite samples are described along with the application of these nanocomposites as electrocatalysts for alcohol oxidation. Samples were prepared by a biphasic system in which platinum nanoparticles (Pt-NPs) are synthesized in situ in contact with a carbon nanotube (CNT) dispersion. Variables including platinum precursor/CNT ratio, previous chemical treatment of carbon nanotubes, and presence or absence of a capping agent were evaluated and correlated with the characteristic of the synthesized materials. Samples were characterized by Raman spectroscopy, X-ray diffraction, thermogravimetric analysis and transmission electron microscopy. Glassy carbon electrodes were modified by the nanocomposite samples and evaluated as electrocatalysts for alcohol oxidation. Current densities of 56.1 and 79.8/104.7 mA cm-2 were determined for the oxidation of methanol and ethanol, respectively.
Resumo:
Large scale preparation of hybrid electrical actuators represents an important step for the production of low cost devices. Interfacial polymerization of polypyrrole in the presence of multi-walled carbon nanotubes represents a simple technique in which strong interaction between components is established, providing composite materials with potential applications as actuators due to the synergistic interaction between the individual components, i.e., fast response of carbon nanotubes, high strain of polypyrrole, and diversity in the available geometry of resulting samples.
Resumo:
We studied the feasibility of using halloysite clay nanotubes (HNTs) and carboxyl-functionalised multi-walled carbon nanotubes (COOH-MWCNTs) as antigen carriers to improve immune responses against a recombinant LipL32 protein (rLipL32). Immunisation using the HNTs or COOH-MWCNTs significantly increased the rLipL32-specific IgG antibody titres (p < 0.05) of Golden Syrian hamsters. None of the vaccines tested conferred protection against a challenge using a virulent Leptospira interrogans strain. These results demonstrated that nanotubes can be used as antigen carriers for delivery in hosts and the induction of a humoral immune response against purified leptospiral antigens used in subunit vaccine preparations.
Resumo:
An amperometric sensor was constructed, by using humic acids to immobilize Fe3+ ions on a carbon paste electrode (CPE-HA-Fe), and used for ascorbic acid (H2A) determination. The cyclic voltammogram of the electrode showed electrochemical response due to the Fe3+/Fe2+ couple at E1/2=+0.78 V vs SCE, using 0.5 mol L-1 KCl and 0.2 mol L-1 acetate/0.020 mol L-1 phosphate buffer, at pH = 5.4, as supporting electrolyte. When H2A is added to the electrolyte solution it is observed an oxidation process. The oxidation current, obtained by chronoamperommetry at +0.87 V vs SCE, is proportional to the concentration, represented by the equation I(µA) = 7.6286 [H2A] (mmol L-1) + 1.9583, r = 0.9996, for concentrations between 0.0 and 1.4 mmol L-1. The electrode showed high stability and was used for H2A determination in a natural orange juice.
Resumo:
Carbon Fibre Reinforced Carbon (CFRC) Composites are increasing their applications due to their high strength and Youngs Modulus at high temperatures in inert atmosphere. Although much work has been done on processing and structure and properties relationship, few studies have addressed the modelling of mechanical properties. This work is divided in two parts. In the first part, a modelling of mechanical properties was carried out for two bi-directional composites using a model based on the Bernoulli-Euler theory for symmetric laminated beams. In the second part, acoustic emission (AE) was used as an auxiliary technique for monitoring the failure process of the composites. Differences in fracture behaviour are reflected in patterns of AE.
Effect of particle morphology on the mechanical and thermo-mechanical behavior of polymer composites
Resumo:
Fiber reinforced polymer composites have been used in many applications, such as in automobile, aerospace and naval industries, due basically to their high strength-to-weight and modulus-to-weight, among other properties. Even though particles are usually not able to lead to the level of reinforcement of fibers, particle reinforced polymer composites have been proposed for many new applications due to their low cost, easy fabrication and isotropic properties. In this work, polymer composites were prepared by incorporating glass particles of different morphologies on poly(aryl sulfones) matrices. Particles with aspect ratios equal to 1, 2.5 and 10 were used. The prepared composites were characterized using electron microscopy and thermal analysis. Mechanical properties of the composites were evaluated using a four-point bending test. The thermo-mechanical behavior of the obtained composites was also investigated. The results showed that the morphology of the particles alter significantly the mechanical properties of composites. Particles with larger values of aspect ratio led to large elastic modulus but low levels of strain at failure. This result was explained by modeling the thermo-mechanical behavior of the composites using a viscoelastic model. Parameters of the model, obtained from a Cole-Cole type of plot, demonstrated that interactions at the polymer-reinforcing agent interface were higher for composites with large aspect ratio particles. Higher levels of interactions at interfaces can lead to higher degrees of stress transfer and, consequently, to composites with large elastic modulus, as experimentally observed.
Resumo:
A bacterial strain (PAP04) isolated from cattle farm soil was shown to produce an extracellular, solvent-stable protease. Sequence analysis using 16S rRNA showed that this strain was highly homologous (99%) to Brevibacillus laterosporus. Growth conditions that optimize protease production in this strain were determined as maltose (carbon source), skim milk (nitrogen source), pH 7.0, 40°C temperature, and 48 h incubation. Overall, conditions were optimized to yield a 5.91-fold higher production of protease compared to standard conditions. Furthermore, the stability of the enzyme in organic solvents was assessed by incubation for 2 weeks in solutions containing 50% concentration of various organic solvents. The enzyme retained activity in all tested solvents except ethanol; however, the protease activity was stimulated in benzene (74%) followed by acetone (63%) and chloroform (54.8%). In addition, the plate assay and zymography results also confirmed the stability of the PAP04 protease in various organic solvents. The organic solvent stability of this protease at high (50%) concentrations of solvents makes it an alternative catalyst for peptide synthesis in non-aqueous media.
Resumo:
The objective of the present study was the isolation of a yeast strain, from citrus fruit peels, able to produce a polygalacturonase by submerged fermentation with maceration activity of raw cassava roots. Among 160 yeast strains isolated from citrus peels, one strain exhibited the strongest pectinolytic activity. This yeast was identified as Wickerhamomyces anomalus by 5.8S-ITS RFLP analysis and confirmed by amplification of the nucleotide sequence. The yeast produced a polygalacturonase (PG) in Erlenmeyer shake flasks containing YNB, glucose, and citrus pectin. PG synthesis occurred during exponential growth phase, reaching 51 UE.mL-1 after 8 hours of fermentation. A growth yield (Yx/s) of 0.43 gram of cell dry weight per gram of glucose consumed was obtained, and a maximal specific growth rate (µm) of 0.346 h-1 was calculated. The microorganism was unable to assimilate sucrose, galacturonic acid, polygalacturonic acid, or citrus pectin, but it required glucose as carbon and energy source and polygalacturonic acid or citrus pectin as inducers of enzyme synthesis. The crude enzymatic extract of Wickerhamomyces anomalus showed macerating activity of raw cassava. This property is very important in the production of dehydrated mashed cassava, a product of regional interest in the province of Misiones, Argentina.