32 resultados para NOREPINEPHRINE
em Scielo Saúde Pública - SP
Resumo:
OBJECTIVE: This study aims to evaluate the citotoxic activity of two commonly used anti-depressants: paroxetine and bupropion. We also evaluated the in vitro natural killer activity (NKA) after incubating the blood samples with the antidepressants. METHODS: Peripheral blood samples from 15 healthy volunteers were collected and the mononuclear cells (PBMCs) were isolated and incubated for 24h with (or without = control cells) paroxetine and bupropion, in concentrations of 30, 100 and 1000 ng/ml. After the incubation period in both groups, the amount of dead cells was calculated using trypam blue technique. NKA was evaluated using the classic51Cr release assay. CONCLUSIONS: PBMCs dead cells occurred in both groups and in proportion to all pharmacological concentrations. Nevertheless, the NKA was not affected, even with the reduction in the number of effective cells.
Resumo:
The role of catecholamines in the distribution of intrarenal blood flow and in single-nephron glomerular filtration rate (SNGFR) was evaluated in anesthetized Wistar rats by the Hanssen technique. Epinephrine (EPI) and norepinephrine (NOR) were infused to produce elevations of 20-30 mmHg in mean arterial pressure. Superficial and juxtamedullary nephron perfusion and filtration were determined by the presence of Prussian blue dye. In the control group, 100% of the nephrons presented a homogeneous pattern of perfusion and filtration. In contrast, a heterogeneous distribution of the dye was found even in the larger arteries (arciform and radial), indicating variable perfusion and filtration in both superficial and juxtamedullary nephrons. The effects of EPI and NOR were also evaluated in the superficial cortex by the micropuncture technique in two additional groups of Munich-Wistar rats. Mean SNGFR was 27% and 54% lower in the EPI- and NOR-treated groups, respectively. No change in mean intraglomerular hydraulic pressure was observed after EPI or NOR infusion in spite of a highly scattered pattern, indicating an important variability in perfusion along the superficial cortex, and/or different sensitivity of the pre- and post-glomerular arterioles. The present data suggest that EPI and NOR may affect intrarenal hemodynamics by modifying perfusion and filtration in both superficial and juxtamedullary glomeruli and not by shifting blood flow from superficial to juxtamedullary nephrons. The heterogeneous pattern of perfusion was a consequence of differential vasoconstriction along the intrarenal arteries, probably due to different density and/or sensitivity of the adrenergic receptor subtypes present in the intrarenal vascular tree.
Resumo:
In the current literature, there is evidence that psychological factors can affect the incidence and progression of some cancers. Interleukin 6 (IL-6) is known to be elevated in individuals experiencing chronic stress and is also involved in oncogenesis and cancer progression. However, the precise mechanism of IL-6 induction by the stress-related hormone norepinephrine (NE) is not clear, and, furthermore, there are no reports about the effect of NE on IL-6 expression in gastric epithelial cells. In this study, we examined the effect of NE on IL-6 expression in immortalized human gastric epithelial cells (GES-1 cells). Using real-time PCR and enzyme-linked immunoassay, we demonstrated that NE can induce IL-6 mRNA and protein expression in GES-1 cells. The induction is through the β-adrenergic receptor-cAMP-protein kinase A pathway and mainly at the transcriptional level. Progressive 5′-deletions and site-directed mutagenesis of the parental construct show that, although activating-protein-1 (AP-1), cAMP-responsive element binding protein (CREB), CCAAT-enhancer binding protein-β (C/EBP-β), and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) binding sites are all required in the basal transcription of IL-6, only AP-1 and CREB binding sites in the IL-6 promoter are required in NE-induced IL-6 expression. The results suggest that chronic stress may increase IL-6 secretion of human gastric epithelial cells, at least in part, by the stress-associated hormone norepinephrine, and provides basic data on stress and gastric cancer progression.
Resumo:
New generation antidepressant therapies, including serotonin-norepinephrine reuptake inhibitor (SNRIs), were introduced in the late 1980s; however, few comprehensive studies have compared the benefits and risks of various contemporary treatments for major depressive disorder (MDD) in young patients. A comprehensive literature search of PubMed, Cochrane, Embase, Web of Science, and PsycINFO databases was conducted from 1970 to January 2015. Only clinical trials that randomly assigned one SNRI or placebo to patients aged 7 to 18 years who met the diagnostic criteria for major depressive disorder were included. Treatment success, dropout rate, and suicidal ideation/attempt outcomes were measured. Primary efficacy was determined by pooling the risk ratios (RRs) of treatment response and remission. Acceptability was determined by pooling the RRs of dropouts for all reasons and for adverse effects as well as suicide-risk outcomes. Five trials with a total of 973 patients were included. SNRIs were not significantly more effective than placebo for treatment response but were for remission. The comparison of patients taking SNRIs that dropped out for all reasons and those taking placebo did not reach statistical significance. Significantly more patients taking SNRIs dropped out for adverse effects than those taking placebo. No significant difference was found in suicide-related risk outcomes. SNRI therapy does not display a superior efficacy and is not better tolerated compared to placebo in these young patients. However, duloxetine has a potential beneficial effect for depression in young populations, showing a need for further research.
Resumo:
A cross-sectional study of 120 subjects was performed with the purpose of evaluating stress hormones and emotional stress (anxiety) in outpatient and hospitalized subjects. The aims were to determine the degree of objective stress, as well as to correlate this finding with subjective findings, estimated using Beck's Anxiety Inventory.. METHOD: Three populations were investigated, namely outpatient clinical cases (Group I, n = 30), hospitalized clinical individuals (Group II, n = 30), and hospitalized surgical candidates (Group III, n = 30). Controls (Group IV, n = 30) were healthy volunteers who were health-care professionals and students. To avoid hormone interactions, only men were enrolled in all groups. All hospitalized subjects were tested on admission and before therapeutic interventions. Fasting epinephrine, norepinephrine, and cortisol were measured in the morning, and Beck's Anxiety Inventory was adminstered by a trained psychologist. RESULTS: The 3 patient groups displayed higher anxiety levels than the controls. Hormone concentrations did not present remarkable changes and did not correlate with subjective stress (anxiety). CONCLUSIONS: 1) Subjective disorders (as determined with Beck's Anxiety Inventory ) were a common finding in both outpatient and hospitalized populations, without differences between the various groups; 2) Objective stress (as determined by elevated hormone levels) was more difficult to confirm-findings rarely exceeded the reference range; 3) Correlation between the two variables could not be demonstrated; 4) Further studies are necessary to define stress quantification and interpretation in patient populations, especially in relationship with nutritional diagnosis and dietetic prescription.
Resumo:
OBJECTIVE: Initial studies with tricyclic antidepressants demonstrated that they jeopardize the immune system activity. Recent studies suggested that selective serotonin reuptake inhibitors would have stimulating immunological effects. Here, we explored the in vitro immunological effects of two antidepressants used in clinical practice, paroxetine (selective serotonin reuptake inhibitor) and bupropion (norepinephrine and dopamine reuptake inhibitor). METHOD: Peripheral blood samples were obtained from 16 healthy volunteers and the peripheral blood mononuclear cells were isolated and cultured in vitro. We evaluated the effects of bupropion and paroxetine on cell viability as well as the ability to suppress phytohemagglutinin-induced lymphocyte proliferation. RESULTS: Both antidepressants produced neither significant effect on cell viability nor on T-cell proliferation. CONCLUSIONS: This could be of valuable information for the clinical practice when these drugs are administered. These results indicate a more favorable effect of such psychopharmacological drugs when compared to reported immunological effects associated with tryciclic antidepressants.
Resumo:
Background: Ruthenium (Ru) tetraamines are being increasingly used as nitric oxide (NO) carriers. In this context, pharmacological studies have become highly relevant to better understand the mechanism of action involved. Objective: To evaluate the vascular response of the tetraamines trans-[RuII(NH3)4(Py)(NO)]3+, trans-[RuII(Cl)(NO) (cyclan)](PF6)2, and trans-[RuII(NH3)4(4-acPy)(NO)]3+. Methods: Aortic rings were contracted with noradrenaline (10−6 M). After voltage stabilization, a single concentration (10−6 M) of the compounds was added to the assay medium. The responses were recorded during 120 min. Vascular integrity was assessed functionally using acetylcholine at 10−6 M and sodium nitroprusside at 10−6 M as well as by histological examination. Results: Histological analysis confirmed the presence or absence of endothelial cells in those tissues. All tetraamine complexes altered the contractile response induced by norepinephrine, resulting in increased tone followed by relaxation. In rings with endothelium, the inhibition of endothelial NO caused a reduction of the contractile effect caused by pyridine NO. No significant responses were observed in rings with endothelium after treatment with cyclan NO. In contrast, in rings without endothelium, the inhibition of guanylate cyclase significantly reduced the contractile response caused by the pyridine NO and cyclan NO complexes, and both complexes caused a relaxing effect. Conclusion: The results indicate that the vascular effect of the evaluated complexes involved a decrease in the vascular tone induced by norepinephrine (10−6 M) at the end of the incubation period in aortic rings with and without endothelium, indicating the slow release of NO from these complexes and suggesting that the ligands promoted chemical stability to the molecule. Moreover, we demonstrated that the association of Ru with NO is more stable when the ligands pyridine and cyclan are used in the formulation of the compound.
Resumo:
In Chagas disease serious cardiac dysfunction can appear. We specifically studied the cardiac function by evaluating: ventricle contractile force and norepinephrine response, affinity and density of beta-adrenergic receptors, dynamic properties of myocardial membranes, and electrocardiography. Albino swiss mice (n = 250) were infected with 55 trypomastigotes, Tulahuen strain and studied at 35, 75, and 180 days post-infection, that correspond to the acute, indeterminate, and chronic phase respectively. Cardiac beta-adrenergic receptors' affinity, myocardial contractility, and norepinephrine response progressively decreased from the acute to the chronic phase of the disease (p < 0.01). The density (expressed as fmol/mg.prot) of the receptors was similar to non-infected mice (71.96 ± 0.36) in both the acute (78.24 ± 1.67) and indeterminate phases (77.28 ± 0.91), but lower in the chronic disease (53.32 ± 0.71). Electrocardiographic abnormalities began in the acute phase and were found in 65% of the infected-mice during the indeterminate and chronic phases. Membrane contents of triglycerides, cholesterol, and anisotropy were similar in all groups. A quadratic correlation between the affinity to beta-adrenergic receptors and cardiac contractile force was obtained. In conclusion the changes in cardiac beta-adrenergic receptors suggests a correlation between the modified beta-adrenergic receptors affinity and the cardiac contractile force.
Resumo:
Nitric oxide synthase (NOS)-containing neurons have been localized in various parts of the CNS. These neurons occur in the hypothalamus, mostly in the paraventricular and supraoptic nuclei and their axons project to the neural lobe of the pituitary gland. We have found that nitric oxide (NO) controls luteinizing hormone-releasing hormone (LHRH) release from the hypothalamus acting as a signal transducer in norepinephrine (NE)-induced LHRH release. LHRH not only releases LH from the pituitary but also induces sexual behavior. On the other hand, it is known that oxytocin also stimulates mating behavior and there is some evidence that oxytocin can increase NE release. Therefore, it occurred to us that oxytocin may also stimulate LHRH release via NE and NO. To test this hypothesis, we incubated medial basal hypothalamic (MBH) explants from adult male rats in vitro. Following a preincubation period of 30 min, MBH fragments were incubated in Krebs-Ringer bicarbonate buffer in the presence of various concentrations of oxytocin. Oxytocin released LHRH at concentrations ranging from 0.1 nM to 1 µM with a maximal stimulatory effect (P<0.001) at 0.1 µM, but with no stimulatory effect at 10 µM. That these effects were mediated by NO was shown by the fact that incubation of the tissues with NG-monomethyl-L-arginine (NMMA), a competitive inhibitor of NOS, blocked the stimulatory effects. Furthermore, the release of LHRH by oxytocin was also blocked by prazocin, an a1-adrenergic receptor antagonist, indicating that NE mediated this effect. Oxytocin at the same concentrations also increased the activity of NOS (P<0.01) as measured by the conversion of [14C]arginine to citrulline, which is produced in equimolar amounts with NO by the action of NOS. The release of LHRH induced by oxytocin was also accompanied by a significant (P<0.02) increase in the release of prostaglandin E2 (PGE2), a mediator of LHRH release that is released by NO. On the other hand, incubation of neural lobes with various concentrations of sodium nitroprusside (NP) (300 or 600 µM), a releaser of NO, revealed that NO acts to suppress (P<0.01) the release of oxytocin. Therefore, our results indicate that oxytocin releases LHRH by stimulating NOS via NE, resulting in an increased release of NO, which increases PGE2 release that in turn induces LHRH release. Furthermore, the released NO can act back on oxytocinergic terminals to suppress the release of oxytocin in an ultrashort-loop negative feedback
Resumo:
Male Wistar rats were trained in one-trial step-down inhibitory avoidance using a 0.4-mA footshock. At various times after training (0, 1.5, 3, 6 and 9 h for the animals implanted into the CA1 region of the hippocampus; 0 and 3 h for those implanted into the amygdala), these animals received microinfusions of SKF38393 (7.5 µg/side), SCH23390 (0.5 µg/side), norepinephrine (0.3 µg/side), timolol (0.3 µg/side), 8-OH-DPAT (2.5 µg/side), NAN-190 (2.5 µg/side), forskolin (0.5 µg/side), KT5720 (0.5 µg/side) or 8-Br-cAMP (1.25 µg/side). Rats were tested for retention 24 h after training. When given into the hippocampus 0 h post-training, norepinephrine enhanced memory whereas KT5720 was amnestic. When given 1.5 h after training, all treatments were ineffective. When given 3 or 6 h post-training, 8-Br-cAMP, forskolin, SKF38393, norepinephrine and NAN-190 caused memory facilitation, while KT5720, SCH23390, timolol and 8-OH-DPAT caused retrograde amnesia. Again, at 9 h after training, all treatments were ineffective. When given into the amygdala, norepinephrine caused retrograde facilitation at 0 h after training. The other drugs infused into the amygdala did not cause any significant effect. These data suggest that in the hippocampus, but not in the amygdala, a cAMP/protein kinase A pathway is involved in memory consolidation at 3 and 6 h after training, which is regulated by D1, ß, and 5HT1A receptors. This correlates with data on increased post-training cAMP levels and a dual peak of protein kinase A activity and CREB-P levels (at 0 and 3-6 h) in rat hippocampus after training in this task. These results suggest that the hippocampus, but not the amygdala, is involved in long-term storage of step-down inhibitory avoidance in the rat.
Resumo:
Myocardial contractility depends on several mechanisms such as coronary perfusion pressure (CPP) and flow as well as on a1-adrenoceptor stimulation. Both effects occur during the sympathetic stimulation mediated by norepinephrine. Norepinephrine increases force development in the heart and produces vasoconstriction increasing arterial pressure and, in turn, CPP. The contribution of each of these factors to the increase in myocardial performance needs to be clarified. Thus, in the present study we used two protocols: in the first we measured mean arterial pressure, left ventricular pressure and rate of rise of left ventricular pressure development in anesthetized rats (N = 10) submitted to phenylephrine (PE) stimulation before and after propranolol plus atropine treatment. These observations showed that in vivo a1-adrenergic stimulation increases left ventricular-developed pressure (P<0.05) together with arterial blood pressure (P<0.05). In the second protocol, we measured left ventricular isovolumic systolic pressure (ISP) and CPP in Langendorff constant flow-perfused hearts. The hearts (N = 7) were perfused with increasing flow rates under control conditions and PE or PE + nitroprusside (NP). Both CPP and ISP increased (P<0.01) as a function of flow. CPP changes were not affected by drug treatment but ISP increased (P<0.01). The largest ISP increase was obtained with PE + NP treatment (P<0.01). The results suggest that both mechanisms, i.e., direct stimulation of myocardial a1-adrenoceptors and increased flow, increased cardiac performance acting simultaneously and synergistically.
Resumo:
Although a slightly elevated office blood pressure (BP) has been reported in several studies, little is known about the prolonged resting blood pressure, heart rate (HR) and baroreflex sensitivity (BRS) of prehypertensive subjects with a family history of hypertension. Office blood pressure, prolonged resting (1 h) BP and HR were measured in 25 young normotensives with a positive family history of hypertension (FH+) and 25 young normotensives with a negative family history of hypertension (FH-), matched for age, sex, and body mass index. After BP and HR measurements, blood samples were collected for the determination of norepinephrine, plasma renin activity and aldosterone levels, and baroreflex sensitivity was then tested. Casual BP, prolonged resting BP and heart rate were significantly higher in the FH+ group (119.9 ± 11.7/78.5 ± 8.6 mmHg, 137.3 ± 12.3/74.4 ± 7.9 mmHg, 68.5 ± 8.4 bpm) compared to the FH- group (112.9 ± 11.4/71.2 ± 8.3 mmHg, 128.0 ± 11.8/66.5 ± 7.4 mmHg, 62.1 ± 6.0 bpm). Plasma norepinephrine level was significantly higher in the FH+ group (220.1 ± 104.5 pg/ml) than in the FH- group (169.1 ± 63.3 pg/ml). Baroreflex sensitivity to tachycardia (0.7 ± 0.3 vs 1.0 ± 0.5 bpm/mmHg) was depressed in the FH+ group (P<0.05). The FH+ group exhibited higher casual blood pressure, prolonged resting blood pressure, heart rate and plasma norepinephrine levels than the FH- group (P<0.05), suggesting an increased sympathetic tone in these subjects. The reflex tachycardia was depressed in the FH+ group.
Resumo:
The purpose of this study was to investigate the effect of the level of injury on the serum level of norepinephrine (Nor) and epinephrine (Epi) at rest and after maximal exercise in individuals with paraplegia. Twenty-six male spinal cord-injured subjects with complete paraplegia for at least 9 months were divided into two groups of 13 subjects each according to the level of injury, i.e., T1-T6 and T7-T12. Serum Nor and Epi concentrations were measured by HPLC-ECD, at rest (PRE) and immediately after a maximal ergospirometric test (POST). Statistical analysis was performed using parametric and non-parametric tests. Maximal heart rate, peak oxygen uptake, and PRE and POST Nor were lower in the T1-T6 than in the T7-T12 group (166 ± 28 vs 188 ± 10 bpm; 18.0 ± 6.0 vs 25.8 ± 4.1 ml kg-1 min-1; 0.54 ± 0.26 vs 0.99 ± 0.47 nM; 1.48 ± 1.65 vs 3.07 ± 1.44 nM). Both groups presented a significant increase in Nor level after exercise, while only the T7-T12 group showed a significant increase in Epi after exercise (T1-T6: 0.98 ± 0.72 vs 1.11 ± 1.19 nM; T7-T12: 1.24 ± 1.02 vs 1.89 ± 1.57 nM). These data show that individuals with paraplegia above T6 have an attentuated catecholamine release at rest and response to exercise as compared to subjects with injuries below T6, which might prevent a better exercise performance in the former group.
Resumo:
The release of adrenocorticotropin (ACTH) from the corticotrophs is controlled principally by vasopressin and corticotropin-releasing hormone (CRH). Oxytocin may augment the release of ACTH under certain conditions, whereas atrial natriuretic peptide acts as a corticotropin release-inhibiting factor to inhibit ACTH release by direct action on the pituitary. Glucocorticoids act on their receptors within the hypothalamus and anterior pituitary gland to suppress the release of vasopressin and CRH and the release of ACTH in response to these neuropeptides. CRH neurons in the paraventricular nucleus also project to the cerebral cortex and subcortical regions and to the locus ceruleus (LC) in the brain stem. Cortical influences via the limbic system and possibly the LC augment CRH release during emotional stress, whereas peripheral input by pain and other sensory impulses to the LC causes stimulation of the noradrenergic neurons located there that project their axons to the CRH neurons stimulating them by alpha-adrenergic receptors. A muscarinic cholinergic receptor is interposed between the alpha-receptors and nitric oxidergic interneurons which release nitric oxide that activates CRH release by activation of cyclic guanosine monophosphate, cyclooxygenase, lipoxygenase and epoxygenase. Vasopressin release during stress may be similarly mediated. Vasopressin augments the release of CRH from the hypothalamus and also augments the action of CRH on the pituitary. CRH exerts a positive ultrashort loop feedback to stimulate its own release during stress, possibly by stimulating the LC noradrenergic neurons whose axons project to the paraventricular nucleus to augment the release of CRH.