51 resultados para NICKEL(II) COMPLEXES
em Scielo Saúde Pública - SP
Resumo:
Solid state compounds M-4-DMCP, where 4-DMCP is 4-dimethylaminocinnamylidenepyruvate and M represents Mn (II), Co (II), Ni (II), Cu (II), Zn (II) and Pb (II) were prepared. These compounds were studied by thermoanalitycal techniques: thermogravimetry (TG), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), X-ray diffraction powder patterns and complexometric titration with EDTA. From the results obtained by the complexometric titration with EDTA, TG, DTG and DSC curves, was possible to establish the hydration degree, stoichiometry and thermal stability of the prepared compounds.
Resumo:
Synthesis, spectral identification, and magnetic properties of three complexes of Ni(II), Cu(II), and Zn(II) are described. All three compounds have the general formula [M(L)2(H2O)2], where L = deprotonated phenol in the Schiff base 2-((z)-(3-methylpyridin-2-yleimino)methyl)phenol. The three complexes were synthesized in a one-step synthesis and characterized by elemental analysis, Fourier transform infrared spectroscopy, electronic spectra, X-ray diffraction (XRD), and room temperature magnetic moments. The Cu(II) and Ni(II) complexes exhibited room temperature magnetic moments of 1.85 B.M. per copper atom and 2.96 B.M. per nickel atom. The X-band electron spin resonance spectra of a Cu(II) sample in dimethylformamide frozen at 77 K (liquid nitrogen temperature) showed a typical ΔMS = ± 1 transition. The complexes ([M(L)2(H2O)2]) were investigated by the cyclic voltammetry technique, which provided information regarding the electrochemical mechanism of redox behavior of the compounds. Thermal decomposition of the complexes at 750 ºC resulted in the formation of metal oxide nanoparticles. XRD analyses indicated that the nanoparticles had a high degree of crystallinity. The average sizes of the nanoparticles were found to be approximately 54.3, 30.1, and 44.4 nm for NiO, CuO, and ZnO, respectively.
Resumo:
Two complexes of Rh(I) and Pd(II) with chloride and tridecylamine ligands were obtained and characterized by Elementary Analysis and by XPS and FTIR spectroscopies. Complexes anchored on γ-Al2O3 were tested in the styrene semi-hydrogenation reaction carried out in the absence or presence of a sulfur poison. Although both low loaded catalysts were highly selective, the Pd(II) complex was three times more active than the Rh(I) complex. The rhodium complex was more sulfur resistant but less active than the palladium complex. Differences in conversion and sulfur resistance between both complexes could be related to electronic and/or geometric effects.
Resumo:
A potentiometric Nickel sensor was prepared using 2-hydroxy-1-naphthylidene-N-cyanoacetohydrazone as electro-active material and epoxy resin as a binding material. A membrane composed of 40% Schiff's base and 60% epoxy resin exhibited the best performance. The membrane showed excellent response in the concentration range of 0.15 ppm to 0.1 mol L- 1 Ni+2 ions with non-Nernstian slope of 22.0 mV/decade, had a rapid response time (less than 10 s), and can be used for three months without any considerable loss of potential. The sensor was useful within the pH range of 1.3 to 9.6, and was able to discriminate between Ni2+ and a large number of alkaline earth and transition metal ions. The practical utility of the sensor has been demonstrated by using it successfully as an indicator electrode in the potentiometric titration of Ni2+ with EDTA and oxalic acid.
Resumo:
Electrode kinetics and study of 'transition state' with applied potential in case of [M - antibiotics - cephalothin] system were reported at pH = 7.30 ± 0.01 at suitable supporting electrolyte at 25.0ºC. The M = Co or Ni and antibiotics were doxycycline, chlortetracycline, oxytetracycline, tetracycline, minocycline, amoxicillin and chloramphenicol used as primary ligands and cephalothin as secondary ligand. Kinetic parameters viz. transfer coefficient (a), degree of irreversibility (l), diffusion coefficient (D) and rate constant (k) were determined. The values of a and k varied from 0.41 to 0.59 and 2.60 X 10-3 cm s-1 to 9.67 X 10-3 cm s-1 in case of [Co - antibiotics - cephalothin] system. In case of [Ni - antibiotics - cephalothin], a and k varied from 0.41 to 0.58 and 2.34 X 10-3 cm s-1 to 9.19 X 10-3 cm s-1 respectively confirmed that transition state behaves between oxidant and reductant response to applied potential and it adjusts it self in such a way that the same is located midway between dropping mercury electrode and solution interface. The values of rate constant confirmed the quasireversible nature of electrode processes. The stability constants (logb) of complexes were also determined.
Resumo:
This review presents studies on methyl coenzyme M reductase, the biological system Factor 430 (F430) and the use of nickel(II) complexes as structural and functional models. The ability of F430 and nickel(II) macrocycle complexes to mediate the reductive dehalogenation of cyclohexyl halogens and the CH3-S bond cleavage of methyl CoM (by sodium borohydride and some intermediate species) proposed for the catalytic cycle of the biological system F430 was reviewed. The importance of the structure of the nickel complexes and the condition of the catalytic reduction reaction are also discussed.
Resumo:
The crystal and molecular structures of [bis(5-chloro-2-methoxybenzoate)tetraaquamanganese(II)], [pentaaqua(5-chloro-2-methoxybenzoato)cobalt(II)] (5-chloro-2-methoxybenzoate), [pentaaqua(5-chloro-2-methoxybenzoato)nickel(II)] (5-chloro-2-methoxybenzoate) and [aquabis(5-chloro-2-methoxybenzoate)zinc(II)] monohydrate were determined by a single-crystal X-ray analysis. Mn(H2O)4L2 (where L = C8H6ClO3) crystallizes in the monoclinic system, space group P21/c. [Co(H2O)5L]L and [Ni(H2O)5L]L both are isostructural, space group P212121. The crystals of [Zn(H2O)L2] H2O are monoclinic, space group Pc. Mn(II) ion is positioned at the crystallographic symmetry center. Mn(II) and Co(II) ions adopt the distorted octahedral coordination but Zn(II) tetrahedral one.The carboxylate groups in the complexes with M(II) cations function as monodentate, bidentate and/or free COO-groups. The ligands exist in the crystals as aquaanions. The complexes of 5-chloro-2-methoxybenzoates with Mn(II), Co(II) and Zn(II) form bilayer structure.
Resumo:
When the compounds are heated in an inert atmosphere it can be verified the consecutive partial sublimation, fusion, partial volatilization and partial thermal decomposition of the anhydrous complexes. When in an oxidating atmosphere the above process is only verified to Cu(II) chelates. Anhydrous copper(II) complexes present a monoclinic structure in the b form and the volatilized compound in a a form. Zinc(II) and cadmium(II) hydrated complexes are isomorphous and they present different cell dimensions from those reported previously.
Resumo:
Capsules were prepared from chitosan (QTS)-poly(vinyl alcohol) (PVA) blend by saline coacervation and then by formalization. A adsorbent based on chitosan, insoluble on acid solution, was obtained. The morphology, average diameters of QTS/PVA capsules and their pores were studied by using scanning electron microscopy. The entrapment-adsorption of dimethylglioxime and ethylenediaminetetracetate by the capsules were studied. The removal of the ion nickel (II) and copper (II), was more effective than by using unloaded capsules.
Resumo:
The immune responses are mediated by a variety of cells that, when activated, produce a number of molecules. Macrophages are the first cells to take part in the immune response releasing many compounds in the extracellular environment such as H2O2. Taking into account this aspect we evaluated the activation of an immunological system, in vitro, by determining the H2O2 released in cultures of peritoneal macrophage cells from Swiss mice in the presence of organopalladated compounds of the type [Pd(dmba)(X)(dppp)], dmba = N,N-dimethylbenzylamine, dppp = 1,3-bis(diphenylphosphine)propane, X = Cl, N3, NCO, NCS. An excellent activation of macrophages by the [Pd(dmba)(X)(dppp)] compounds was observed and the influence of the X ligand on the immune response could be verified.
Resumo:
Platinum (II) complexes, for example, cisplatin and carboplatin, have been used as chemotherapeutic agents for the treatment of various types of cancer. Several other complexes of this metallic ion are also under clinical evaluation. This work describes the synthesis of five new platinum (II) complexes having furan and 5-nitrofuran derivatives and chloride as ligands. The compounds were characterized by NMR, IR and elemental analysis.
Resumo:
Herein, the immobilization of some Schiff base-copper(II) complexes in smectite clays is described as a strategy for the heterogenization of homogeneous catalysts. The obtained materials were characterized by spectroscopic techniques, mostly UV/Vis, EPR, XANES and luminescence spectroscopy. SWy-2 and synthetic Laponite clays were used for the immobilization of two different complexes that have previously shown catalytic activity in the dismutation of superoxide radicals, and disproportionation of hydrogen peroxide. The obtained results indicated the occurrence of an intriguing intramolecular redox process involving copper and the imine ligand at the surface of the clays. These studies are supported by computational calculations.
Resumo:
Density functional theory was used to investigate the global and local reactivity of some cis-platinum(II) complexes including anticancer drugs, such as cisplatin and carboplatin. Calculated equilibrium geometries at mPW1PW/LANL2DZ* are in close agreement with their available X-ray data. We develop three new local reactivity descriptors: atomic descriptor of philicity, atomic descriptor group and atomic descriptor of philicity group for determining chemical reactivity and selectivity of the studied complexes. This contribution on chemical reactivity allow us to establish qualitative trends, which enable our descriptors for use in rational platinum based anticancer drug design.
Resumo:
The thermal decomposition behavior of the Fe(II), Co(II), Ni(II) and Zn(II) complexes of polydithiooxamide has been investigated by thermogravimetric analysis (TGA) at a heating rate of 20°C min-1 under nitrogen. The Coats-Redfern integral method is used to evaluate the kinetic parameters for the successive steps in the decomposition sequence observed in the TGA curves. The processes of thermal decomposition taking place in the four complexes are studied comparatively as the TGA curves indicate the difference in the thermal decomposition behavior of these complexes. The thermal stabilities of these complexes are discussed in terms of repulsion among electron pairs in the valence shell of the central ion and electronegativity effects.
Resumo:
Complexes of Ni(II) 2,3-, 3,5- and 2,6-dimethoxybenzoates have been synthesized, their physico-chemical properties have been compared and the influence of the position of -OCH3 substituent on their properties investigated. The analysed compounds are crystalline, hydrated salts with green colour. The carboxylate ions show a bidentate chelating or bridging coordination modes. The thermal stabilities of Ni(II) dimethoxybenzoates were investigated in air in the range of 293-1173 K. The complexes decompose in three steps, yelding the NiO as the final product of decomposition. Their solubilities in water at 293 K are in the order of 10-2-10-4 mol×dm-3. The magnetic susceptibilities for the analysed dimethoxybenzoates of Ni(II) were measured over the range of 76-303 K and the magnetic moments were calculated. The results reveal that the complexes are the high-spin ones and the ligands form the weak electrostatic field in the octahedral coordination sphere of the central Ni(II) ion. The various position -OCH3 groups in benzene ring cause the different steric, mesomeric and inductive effects on the electron density in benzene ring.