60 resultados para NG-monomethyl-L-arginine
em Scielo Saúde Pública - SP
Resumo:
OBJECTIVE: To determine whether arginine vasopressin releases endothelium-derived nitric oxide (EDNO) from the epicardial coronary artery. METHODS: We studied segments of canine left circumflex coronary arteries suspended in organ chambers to measure isometric force. The coronary artery segments were contracted with prostaglandin F2alpha (2 x 10-6M) and exposed to a unique, strong arginine vasopressin concentration (10-6M) or titrated concentrations (10-9 a 10-5 M). RESULTS: The unique dose of arginine vasopressin concentration (10-6M) induced transient, but significant (p<0.05), relaxation in arterial segments with endothelium, and an increase, not significant, in tension in arteries without endothelium. Endothelium-dependent relaxation to arginine vasopressin was inhibited by Ng-monomethyl-L-arginine (L-NMMA, 10-5M) or N G-nitro-L-arginine (L-NOARG) (10-4M), 2 inhibitors of nitric oxide synthesis from L-arginine. Exogenous L-arginine (10-4M), but not D-arginine (10-4M), reversed the inhibitory effect of L-NMMA on vasopressin-mediated vasorelaxation. Endothelium dependent relaxation to vasopressin was also reversibly inhibited by the vasopressin V1-receptor blocker d(CH2)5Try(Me) arginine vasopressin (10-6M) (n=6, P<0.05). CONCLUSION: Vasopressin acts through V1 endothelial receptors to stimulate nitric oxide release from L-arginine.
Resumo:
OBJECTIVE: To study the mechanism by which poly-L-arginine mediates endothelium-dependent relaxation. METHODS: Vascular segments with and without endothelium were suspended in organ chambers filled with control solution maintained at 37ºC and bubbled with 95% O2 / 5% CO2. Used drugs: indomethacin, acetycholine, EGTA, glybenclamide, ouabain, poly-L-arginine, methylene blue, N G-nitro-L-arginine, and verapamil and N G-monomethyl-L-arginine. Prostaglandin F2á and potassium chloride were used to contract the vascular rings. RESULTS: Poly-L-arginine (10-11 to 10-7 M) induced concentration-dependent relaxation in coronary artery segments with endothelium. The relaxation to poly-L-arginine was attenuated by ouabain, but was unaffected by glybenclamide. L-NOARG and oxyhemoglobin caused attenuation, but did not abolish this relaxation. Also, the relaxations was unaffected by methylene blue, verapamil, or the presence of a calcium-free bathing medium. The endothelium-dependent to poly-L-arginine relaxation was abolished only in vessels contracted with potassium chloride (40 mM) in the presence of L-NOARG and indomethacin. CONCLUSION: These experiments indicate that poly-L-arginine induces relaxation independent of nitric oxide.
Resumo:
We have investigated the effects of L-arginine, D-arginine and L-lysine on airway smooth muscle responsiveness to spasmogens in vitro. Both L-arginine and D-arginine (100 mM) significantly reduced the contractile potency and maximal contractile response to histamine but not to methacholine or potassium chloride in guinea-pig epithelium-denuded isolated trachea. Similarly, the contractile response to histamine was significantly reduced by L-arginine (100 mM) in rabbit epithelium-denuded isolated bronchus. The amino acid L-lysine (100 mM) failed to significantly alter the contractile potency of histamine in guinea-pig isolated trachea (P>0.05). In guinea-pig isolated trachea precontracted with histamine, both L-arginine and D-arginine produced a concentration-dependent relaxation which was not significantly altered by epithelium removal or by the presence of the nitric oxide synthase inhibitor, NG-nitro L-arginine methyl ester (L-NAME; 50 µM). Thus, at very high concentrations, arginine exhibit a non-competitive antagonism of histamine-induced contraction of isolated airway preparations that was independent of the generation of nitric oxide and was not dependent on charge. These observations confirm previous studies of cutaneous permeability responses and of contractile responses of guinea-pig isolated ileal smooth muscle. Taken together, the data suggest that high concentrations of arginine can exert an anti-histamine effect.
Resumo:
Nitric oxide synthase (NOS)-containing neurons have been localized in various parts of the CNS. These neurons occur in the hypothalamus, mostly in the paraventricular and supraoptic nuclei and their axons project to the neural lobe of the pituitary gland. We have found that nitric oxide (NO) controls luteinizing hormone-releasing hormone (LHRH) release from the hypothalamus acting as a signal transducer in norepinephrine (NE)-induced LHRH release. LHRH not only releases LH from the pituitary but also induces sexual behavior. On the other hand, it is known that oxytocin also stimulates mating behavior and there is some evidence that oxytocin can increase NE release. Therefore, it occurred to us that oxytocin may also stimulate LHRH release via NE and NO. To test this hypothesis, we incubated medial basal hypothalamic (MBH) explants from adult male rats in vitro. Following a preincubation period of 30 min, MBH fragments were incubated in Krebs-Ringer bicarbonate buffer in the presence of various concentrations of oxytocin. Oxytocin released LHRH at concentrations ranging from 0.1 nM to 1 µM with a maximal stimulatory effect (P<0.001) at 0.1 µM, but with no stimulatory effect at 10 µM. That these effects were mediated by NO was shown by the fact that incubation of the tissues with NG-monomethyl-L-arginine (NMMA), a competitive inhibitor of NOS, blocked the stimulatory effects. Furthermore, the release of LHRH by oxytocin was also blocked by prazocin, an a1-adrenergic receptor antagonist, indicating that NE mediated this effect. Oxytocin at the same concentrations also increased the activity of NOS (P<0.01) as measured by the conversion of [14C]arginine to citrulline, which is produced in equimolar amounts with NO by the action of NOS. The release of LHRH induced by oxytocin was also accompanied by a significant (P<0.02) increase in the release of prostaglandin E2 (PGE2), a mediator of LHRH release that is released by NO. On the other hand, incubation of neural lobes with various concentrations of sodium nitroprusside (NP) (300 or 600 µM), a releaser of NO, revealed that NO acts to suppress (P<0.01) the release of oxytocin. Therefore, our results indicate that oxytocin releases LHRH by stimulating NOS via NE, resulting in an increased release of NO, which increases PGE2 release that in turn induces LHRH release. Furthermore, the released NO can act back on oxytocinergic terminals to suppress the release of oxytocin in an ultrashort-loop negative feedback
Resumo:
Early systemic arterial hypotension is a common clinical feature of Pseudomonas septicemia. To determine if Pseudomonas aeruginosa endotoxin induces the release of endothelium-derived nitric oxide (EDNO), an endogenous nitrovasodilator, segments of canine femoral, renal, hepatic, superior mesenteric, and left circumflex coronary arteries were suspended in organ chambers (physiological salt solution, 95% O2/5% CO2, pH 7.4, 37oC) to measure isometric force. In arterial segments contracted with 2 µM prostaglandin F2a, Pseudomonas endotoxin (lipopolysaccharide (LPS) serotype 10(Habs) from Pseudomonas aeruginosa (0.05 to 0.50 mg/ml)) induced concentration-dependent relaxation of segments with endothelium (P<0.05) but no significant change in tension of arteries without endothelium. Endothelium-dependent relaxation in response to Pseudomonas LPS occurred in the presence of 1 µM indomethacin, but could be blocked in the coronary artery with 10 µM NG-monomethyl-L-arginine (L-NMMA), a competitive inhibitor of nitric oxide synthesis from L-arginine. The inhibitory effect of L-NMMA on LPS-mediated vasorelaxation of the coronary artery could be reversed by exogenous 100 µM L-arginine but not by 100 µM D-arginine. These experiments indicate that Pseudomonas endotoxin induces synthesis of nitric oxide from L-arginine by the vascular endothelium. LPS-mediated production of EDNO by the endothelium, possibly through the action of constitutive nitric oxide synthase (NOSc), may decrease systemic vascular resistance and may be the mechanism of early hypotension characteristic of Pseudomonas septicemia.
Resumo:
Nitric oxide (NO) plays a crucial role in reproduction at every level in the organism. In the brain, it activates the release of luteinizing hormone-releasing hormone (LHRH). The axons of the LHRH neurons project to the mating centers in the brain stem and by afferent pathways evoke the lordosis reflex in female rats. In males, there is activation of NOergic terminals that release NO in the corpora cavernosa penis to induce erection by generation of cyclic guanosine monophosphate (cGMP). NO also activates the release of LHRH which reaches the pituitary and activates the release of gonadotropins by activating neural NO synthase (nNOS) in the pituitary gland. In the gonad, NO plays an important role in inducing ovulation and in causing luteolysis, whereas in the reproductive tract, it relaxes uterine muscle via cGMP and constricts it via prostaglandins (PG).
Resumo:
Methylated arginine analogues are often used as probes of the effect of nitric oxide; however, their specificity is unclear and seems to be frequently overestimated. This study analyzed the effects of NG-methyl-L-arginine (L-NMMA) on the endothelium-dependent release of vascular superoxide radicals triggered by increased flow. Plasma ascorbyl radical signals measured by direct electron paramagnetic resonance spectroscopy in 25 rabbits increased by 3.8 ± 0.7 nmol/l vs baseline (28.7 ± 1.4 nmol/l, P<0.001) in response to papaverine-induced flow increases of 121 ± 12%. In contrast, after similar papaverine-induced flow increases simultaneously with L-NMMA infusions, ascorbyl levels were not significantly changed compared to baseline. Similar results were obtained in isolated rabbit aortas perfused ex vivo with the spin trap a-phenyl-N-tert-butylnitrone (N = 22). However, in both preparations, this complete blockade was not reversed by co-infusion of excess L-arginine and was also obtained by N-methyl-D-arginine, thus indicating that it is not related to nitric oxide synthase. L-arginine alone was ineffective, as previously demonstrated for NG-methyl-L-arginine ester (L-NAME). In vitro, neither L-arginine nor its analogues scavenged superoxide radicals. This nonspecific activity of methylated arginine analogues underscores the need for careful controls in order to assess nitric oxide effects, particularly those related to interactions with active oxygen species.
Resumo:
Although it has been demonstrated that nitric oxide (NO) released from sodium nitrite induces tetanic fade in the cat neuromuscular preparations, the effect of L-arginine on tetanic fade and its origin induced by NO have not been studied in these preparations. Furthermore, atropine reduces tetanic fade induced by several cholinergic and anticholinergic drugs in these preparations, whose mechanism is suggested to be mediated by the interaction of acetylcholine with inhibitory presynaptic muscarinic receptors. The present study was conducted in cats to determine the effects of L-arginine alone or after pretreatment with atropine or 1H-[1,2,4]oxadiazole [4,3-a]quinoxalin-1-one (ODQ) on neuromuscular preparations indirectly stimulated at high frequency. Drugs were injected into the middle genicular artery. L-arginine (2 mg/kg) and S-nitroso-N-acetylpenicillamine (SNAP; 16 µg/kg) induced tetanic fade. The Nw-nitro-L-arginine (L-NOARG; 2 mg/kg) alone did not produce any effect, but reduced the tetanic fade induced by L-arginine. D-arginine (2 mg/kg) did not induce changes in tetanic fade. The tetanic fade induced by L-arginine or SNAP was reduced by previous injection of atropine (1.0 µg/kg) or ODQ (15 µg/kg). ODQ alone did not change tetanic fade. The data suggest that the NO-synthase-GC pathway participates in the L-arginine-induced tetanic fade in cat neuromuscular preparations. The tetanic fade induced by L-arginine probably depends on the action of NO at the presynaptic level. NO may stimulate guanylate cyclase increasing acetylcholine release and thereby stimulating presynaptic muscarinic receptors.
Resumo:
The drinking behavior responses to centrally administered NG-nitro-L-arginine methyl ester (L-NAME; 10, 20 or 40 µg/µl), an inhibitor of nitric oxide synthase, were studied in satiated rats, with cannulae stereotaxically implanted into the lateral ventricle (LV) and subfornical organ (SFO). Water intake increased in all animals after angiotensin II (ANG II) injection into the LV, with values of 14.2 ± 1.4 ml/h. After injection of L-NAME at doses of 10, 20 or 40 µg/µl into the SFO before injection of ANG II (12 ng/µl) into the LV, water intake decreased progressively and reached basal levels after treatment with 0.15 M NaCl and with the highest dose of L-NAME (i.e., 40 µg). The water intake obtained after 40 µg/µl L-NAME was 0.8 ± 0.01 ml/h. Also, the injection of L-NAME, 10, 20 or 40 µg/µl, into the LV progressively reduced the water intake induced by hypertonic saline, with values of 5.3 ± 0.8, 3.2 ± 0.8 and 0.7 ± 0.01 ml/h, respectively. These results indicate that nitric oxide is involved in the regulation of drinking behavior induced by centrally administered ANG II and cellular dehydration and that the nitric oxide of the SFO plays an important role in this regulation.
Resumo:
Nitric oxide (NO)-synthase is present in diaphragm, phrenic nerve and vascular smooth muscle. It has been shown that the NO precursor L-arginine (L-Arg) at the presynaptic level increases the amplitude of muscular contraction (AMC) and induces tetanic fade when the muscle is indirectly stimulated at low and high frequencies, respectively. However, the precursor in muscle reduces AMC and maximal tetanic fade when the preparations are stimulated directly. In the present study the importance of NO synthesized in different tissues for the L-Arg-induced neuromuscular effects was investigated. Hemoglobin (50 nM) did not produce any neuromuscular effect, but antagonized the increase in AMC and tetanic fade induced by L-Arg (9.4 mM) in rat phrenic nerve-diaphragm preparations. D-Arg (9.4 mM) did not produce any effect when preparations were stimulated indirectly at low or high frequency. Hemoglobin did not inhibit the decrease of AMC or the reduction in maximal tetanic tension induced by L-Arg in preparations previously paralyzed with d-tubocurarine and directly stimulated. Since only the presynaptic effects induced by L-Arg were antagonized by hemoglobin, the present results suggest that NO synthesized in muscle acts on nerve and skeletal muscle. Nevertheless, NO produced in nerve and vascular smooth muscle does not seem to act on skeletal muscle.
Resumo:
In rats, the nitric oxide (NO)-synthase pathway is present in skeletal muscle, vascular smooth muscle, and motor nerve terminals. Effects of NO were previously studied in rat neuromuscular preparations receiving low (0.2 Hz) or high (200 Hz) frequencies of stimulation. The latter frequency has always induced tetanic fade. However, in these previous studies we did not determine whether NO facilitates or impairs the neuromuscular transmission in preparations indirectly stimulated at frequencies which facilitate neuromuscular transmission. Thus, the present study was carried out to examine the effects of NO in rat neuromuscular preparations indirectly stimulated at 5 and 50 Hz. The amplitude of muscular contraction observed at the end (B) of a 10-s stimulation was taken as the ratio (R) of that obtained at the start (A) (R = B/A). S-nitroso-N-acetylpenicillamine (200 µM), superoxide dismutase (78 U/ml) and L-arginine (4.7 mM), but not D-arginine (4.7-9.4 mM), produced an increase in R (facilitation of neurotransmission) at 5 Hz. However, reduction in the R value (fade of transmission) was observed at 50 Hz. N G-nitro-L-arginine (8.0 mM) antagonized both the facilitatory and inhibitory effects of L-arginine (4.7 mM). The results suggest that NO may modulate the release of acetylcholine by motor nerve terminals.
Resumo:
Lead (Pb)-induced hypertension is characterized by an increase in reactive oxygen species (ROS) and a decrease in nitric oxide (NO). In the present study we evaluated the effect of L-arginine (NO precursor), dimercaptosuccinic acid (DMSA, a chelating agent and ROS scavenger), and the association of L-arginine/DMSA on tissue Pb mobilization and blood pressure levels in plumbism. Tissue Pb levels and blood pressure evolution were evaluated in rats exposed to: 1) Pb (750 ppm, in drinking water, for 70 days), 2) Pb plus water for 30 more days, 3) Pb plus DMSA (50 mg kg-1 day-1, po), L-arginine (0.6%, in drinking water), and the combination of L-arginine/DMSA for 30 more days, and 4) their respective matching controls. Pb exposure increased Pb levels in the blood, liver, femur, kidney and aorta. Pb levels in tissues decreased after cessation of Pb administration, except in the aorta. These levels did not reach those observed in nonintoxicated rats. All treatments mobilized Pb from the kidney, femur and liver. Pb mobilization from the aorta was only effective with the L-arginine/DMSA treatment. Blood Pb concentrations in Pb-treated groups were not different from those of the Pb/water group. Pb increased blood pressure starting from the 5th week. L-arginine and DMSA treatments (4th week) and the combination of L-arginine/DMSA (3rd and 4th weeks) decreased blood pressure levels of intoxicated rats. These levels did not reach those of nonintoxicated rats. Treatment with L-arginine/DMSA was more effective than the isolated treatments in mobilizing Pb from tissues and in reducing the blood pressure of intoxicated rats.
Resumo:
The two-kidney, one-clip renovascular (2K1C) hypertension model is characterized by a reduction in renal flow on the clipped artery that activates the renin-angiotensin system. Endothelium dysfunction, including diminished nitric oxide production, is also believed to play a role in the pathophysiology of this model. Some studies have shown an effect of L-arginine (L-Arg, a nitric oxide precursor) on hypertension. In the present study we determined the ability of L-Arg (7 days of treatment) to reduce blood pressure and alter renal excretions of water, Na+ and K+ in a model of 2K1C-induced hypertension. Under ether anesthesia, male Wistar rats (150-170 g) had a silver clip (0.20 mm) placed around the left renal artery to produce the 2K1C renovascular hypertension model. In the experimental group, the drinking water was replaced with an L-Arg solution (10 mg/ml; average intake of 300 mg/day) from the 7th to the 14th day after surgery. Sham-operated rats were used as controls. At the end of the treatment period, mean blood pressure was measured in conscious animals. The animals were then killed and the kidneys were removed and weighed. There was a significant reduction of mean blood pressure in the L-Arg-treated group when compared to control (129 ± 7 vs 168 ± 6 mmHg, N = 8-10 per group; P<0.05). Concomitantly, a significant enhancement of water and Na+ excretion was observed in the 2K1C L-Arg-treated group when compared to control (water: 13.0 ± 0.7 vs 9.2 ± 0.5 ml/day, P<0.01; Na+: 1.1 ± 0.05 vs 0.8 ± 0.05 mEq/day, respectively, P<0.01). These results show that orally administered L-Arg acts on the kidney, possibly inducing changes in renal hemodynamics or tubular transport due to an increase in nitric oxide formation.
Resumo:
There are only a few studies on the molecular mechanisms underlying the peripheral antihyperalgesic effect of opioids. The aim of this study was to investigate the molecular bases of the peripheral antihyperalgesic effect of fentanyl in a model of prostaglandin-induced chemical hyperalgesia. Prostaglandin E2 (1.4 nmol) injected into one hind paw of male Wistar rats (200-250 g, N = 6 in each experimental or control group) pretreated with indomethacin (2.5 mg/kg) potentiated the nocifensive response to formalin (1%) injection made 60 min later. Drugs applied locally 30 min after prostaglandin E2 induced the following effects: fentanyl (0.1-1.0 nmol) caused a dose-dependent reversal of the hyperalgesic state, naloxone (2 nmol) co-injected with fentanyl (1 nmol) completely reversed the antihyperalgesic effect, Nomega-nitro-L-arginine (NOARG, 0.05-0.2 µmol) in combination with fentanyl (1.0 nmol) caused a dose-dependent inhibition of the antihyperalgesic effect of fentanyl, co-administration of L-arginine (0.5 µmol) with NOARG (0.2 µmol) plus fentanyl (1.0 nmol) fully restored the antihyperalgesic effect, and the cyclic-GMP phosphodiesterase inhibitor UK-114,542-27 (5-[2-ethoxy-5-(morpholinylacetyl) phenyl]-1,6-dihydro-1-methyl-3-propyl-7H-pyrazolo [4,3-d]-pyrimidin-7-one methanesulfonate monohydrate; 0.5-2.0 µmol) potentiated a subeffective dose of fentanyl (0.1 nmol) in a dose-dependent manner. However, UK-114,542-27 (2.0 µmol) injected alone did not produce this antihyperalgesic effect. Systemically administered fentanyl (1.0 nmol, sc) did not cause antinociception. Taken together, these results support the view that fentanyl reverses prostaglandin E2-induced hyperalgesia, probably by activating an opioid receptor at the periphery, and furthermore the L-arginine/nitric oxide/cyclic-GMP pathway may mediate this peripheral effect of fentanyl.
Resumo:
It has been reported that mental stress causes abnormality of spermiogram parameters. We investigated the effect of psychological stress on the L-arginine-nitric oxide (NO) pathway. Semen samples were collected from 29 healthy fourth semester medical students just before (stress) and 3 months after (non-stress) the final examinations. Psychological stress was measured by the State Anxiety Inventory questionnaire. After standard semen analysis, arginase activity and NO concentration were measured spectrophotometrically in the seminal plasma. Measurements were made in duplicate. During the stress period, sperm concentration (41.28 ± 3.70 vs 77.62 ± 7.13 x 10(6)/mL), rapid progressive motility of spermatozoa (8.79 ± 1.66 vs 20.86 ± 1.63%) and seminal plasma arginase activity (0.12 ± 0.01 vs 0.22 ± 0.01 U/mL) were significantly lower than in the non-stress situation, whereas seminal plasma NO (17.28 ± 0.56 vs 10.02 ± 0.49 µmol/L) was higher compared to the non-stress period (P < 0.001 for all). During stress there was a negative correlation between NO concentration and sperm concentration, the percentage of rapid progressive motility and arginase activity (r = -0.622, P < 0.01; r = -0.425, P < 0.05 and r = -0.445, P < 0.05, respectively). These results indicate that psychological stress causes an increase of NO level and a decrease of arginase activity in the L-arginine-NO pathway. Furthermore, poor sperm quality may be due to excessive production of NO under psychological stress. In the light of these results, we suggest that the arginine-NO pathway, together with arginase and NO synthase, are involved in semen quality under stress conditions.