24 resultados para NANOCOMPOSITE SPHERES
em Scielo Saúde Pública - SP
Resumo:
Pb/Ti, Sn and Mg-based nanocomposite materials were prepared by the high-energy mechanical milling of commercial powders. The surface of these ceramic compounds was strongly influenced by the doping, diameter of the milling spheres and time of the mechanical milling (amorphization process). Such milling leads to the formation of nanocrystalline materials. The mechanical processing parameters of these compounds were investigated through Brunauer, Emmett and Teller isotherms, wide angle X-ray diffraction, transmission electron microscopy and CO2 adsorption.
Resumo:
Our group established a method to culture spheres under serum-free culture condition. However, the biological characteristics and the tumorigenicity of spheres are unknown. Here, we demonstrate that sphere cells expressed high levels of the putative colorectal cancer stem cell markers CD133 and CD44. The CD133-positive rates were 13.27 ± 5.62, 52.71 ± 16.97 and 16.47 ± 2.45% in sphere cells, regular Colo205 cells and differentiated sphere cells, respectively, while the CD44-positive rates were 62.92 ± 8.38, 79.06 ± 12.10 and 47.80 ± 2.5%, respectively, and the CD133/CD44-double-positive rates were 10.77 ± 4.96, 46.89 ± 19.17 and 12.41 ± 2.27%, respectively (P < 0.05). Cancer sphere cells formed crypt-like structures in 3-D culture. Moreover, cells from cancer spheres exhibited more tumorigenicity than regular Colo205 cells in a xenograft assay. The cancer sphere cells displayed much higher oncogenicity than regular Colo205 cells to initiate neoplasms, as assayed by H&E staining, Musashi-1 staining and electron microscopy. Our findings indicated that the sphere cells were enriched with cancer stem cells (CSCs), and exhibited more proliferation capacity, more differentiation potential and especially more tumorigenicity than regular Colo205 cells in vitro and in vivo. Further isolation and characterization of these CSCs may provide new insights for novel therapeutic targets and prognostic markers.
Resumo:
Spheres of different types of material are used for the replacement of lost volume after removal of the eye bulb or its content to prevent contraction of the orbital cavity. The aim of this study was to evaluate the scope of polymethylmethacrylate (PMMA) used as intraocular implant in eviscerated rabbit eye. Twelve New Zealand rabbits underwent unilateral evisceration of the left eye, with subsequent implantation of PMMA sphere 12 mm in diameter. Clinical evaluation was performed daily during the first 15 days after surgery and every 15 days until the end of the study period (180 days). For the histopathological analysis, three animals per trial underwent enucleation at 15, 45, 90 and 180 days after evisceration. There was no wound dehiscence, signs of infection or implant extrusion in any animal throughout the study period. Histological examination revealed the formation of fibrovascular tissue around the implants. The PMMA behaved as inert and non-integrable.
Resumo:
The scope and coverage of the Brazilian Immunization Program can be compared with those in developed countries because it provides a large number of vaccines and has a considerable coverage. The increasing complexity of the program brings challenges regarding its development, high coverage levels, access equality, and safety. The Immunization Information System, with nominal data, is an innovative tool that can more accurately monitor these indicators and allows the evaluation of the impact of new vaccination strategies. The main difficulties for such a system are in its implementation process, training of professionals, mastering its use, its constant maintenance needs and ensuring the information contained remain confidential. Therefore, encouraging the development of this tool should be part of public health policies and should also be involved in the three spheres of government as well as the public and private vaccination services.
Resumo:
ABSTRACT Particle density, gravimetric and volumetric water contents and porosity are important basic concepts to characterize porous systems such as soils. This paper presents a proposal of an experimental method to measure these physical properties, applicable in experimental physics classes, in porous media samples consisting of spheres with the same diameter (monodisperse medium) and with different diameters (polydisperse medium). Soil samples are not used given the difficulty of working with this porous medium in laboratories dedicated to teaching basic experimental physics. The paper describes the method to be followed and results of two case studies, one in monodisperse medium and the other in polydisperse medium. The particle density results were very close to theoretical values for lead spheres, whose relative deviation (RD) was -2.9 % and +0.1 % RD for the iron spheres. The RD of porosity was also low: -3.6 % for lead spheres and -1.2 % for iron spheres, in the comparison of procedures – using particle and porous medium densities and saturated volumetric water content – and monodisperse and polydisperse media.
Resumo:
The concepts of molecule and of molecular structure are so central to understand chemical phenomena that seems to be no doubt about the uniqueness of its meanings. Nevertheless, the idea that the world exhibits a multiform structure and that to different spheres of the world correspond different ways of knowing (Berger & Luckmann, 1967) has received support from different areas of scientific inquiry. Bachelard (1940, 1982) showed that a single philosophical doctrine is not enough to describe all the different ways of thinking when we try to explain a single concept. Wooley's question about the possibility of deducing the concept of molecular structure from quantum theory (Wooley, 1978) strengthened the feasibility of thinking the concept of molecule as a profile that encompasses different meanings. Moreover, research on students' learning of scientific concepts have brought to light that students use several ideas to explain scientific and everyday phenomena which are different from those learned in formal schooling. These ideas are not extinguished or replaced by scientific concepts, despite the efforts to do so in science classes. The common sense and scientific ways of understanding and talking about reality seems to be complementary in the same sense of the Bohr's complementarity (Halliday & Martin, 1993). So, we have to include in our profile of the concept of molecule not only scientific but also common sense zones. Drawing from Bachelard's notion of epistemological profile, from the history of science and from the research on children's ideas in science, we have developed the idea of a conceptual profile and used it to analyse basic scientific concepts, such as the concepts of matter and physical states of matter (Mortimer, 1995) and to investigate new ways to teach them. In the present paper, we will discuss the zones that might constitute a conceptual profile of molecule. The need of complementary views to account for the molecular structure in different contexts bring important issues for understanding and teaching chemistry, which will be discussed further in the article.
Resumo:
This paper describes the construction of a kit of molecular model for illustration of molecular structure in chemical class using cheap materials. The atoms were represented by plastic spheres and the bonds between the atoms were made from plastic straws which were cut in the required length using a scale of 1.6 cm corresponding to 100 pm. Examples of adaptations made in this kit for didactical application are given.
Resumo:
In this work, composites formed from a mixture of V2O5 and polyaniline (PANI) were investigated, for applications as cathode materials for secondary lithium batteries. Electrochemical quartz crystal microbalance (EQCM) data show that charge compensation in the [PANI]0.3V2O5 nanocomposite is achieved predominantly by Li+ migration. However, the charge compensation in the [PANI]V2O5 microcomposite occurs by Li+ and ClO4- transport. Electrochemical Impedance Spectroscopy (EIS) measurements reveal several benefits of nanohybrid formation, including the achievement of shorter ionic diffusion pathways, the higher diffusion rate of the lithium ion and also the higher electronic conductivity, which are responsible for a synergetic effect of the energy storage properties.
Resumo:
We have produced nanocomposite films of Ni:SiO2 by an alternative polymeric precursor route. Films, with thickness of ~ 1000 nm, were characterized by several techniques including X-ray diffraction, scanning electron microscopy, atomic force microscopy, flame absorption atomic spectrometry, and dc magnetization. Results from the microstructural characterizations indicated that metallic Ni-nanoparticles with average diameter of ~ 3 nm are homogeneously distributed in an amorphous SiO2 matrix. Magnetization measurements revealed a blocking temperature T B ~ 7 K for the most diluted sample and the absence of an exchange bias suggesting that Ni nanoparticles are free from an oxide layer.
Resumo:
In this work Fenton and photo-Fenton processes for textile dye degradation were investigated using iron (II) immobilized in alginate spheres. Photomicrographs obtained by scanning electron microscopy showed an irregular and porous surface with a homogeneous distribution of iron. The Fenton process was used to evaluate the degradation efficiency of reactive dyes and this procedure showed a low degradation effect. The association of artificial visible light or solar radiation in the Fenton process (foto-Fenton process) showed degradation ratios of 70 and 80% respectively in 45 min. It was also observed that the iron-alginate matrix can be reused.
Resumo:
Titanium dioxide is an efficient photocatalist, being possible to improve its efficiency with better charge separation which occurs when it is coupled with other semiconductors. Nanometric particles of ZnO were used to impregnate TiO2 P25 in order to optimize its photocatalytic properties. ZnO/TiO2 composites were obtained at different proportions and were characterized by X-ray diffraction (XRD), micro-Raman and diffuse reflectance spectroscopies, measurement of surface area (BET) and scanning electron microscopy (SEM). Raman spectroscopy data revealed a change on the TiO2 surface due the presence of ZnO which was observed by an enlargement of TiO2 peaks and a change on the relation rate between anatase and rutile phases of the composites. The photodegradation of azo-dye Drimaren red revealed better efficiency for ZnO/TiO2 3% nanocomposite and for ZnO pure.
Resumo:
Materials containing aluminum and iron oxide were synthesized through the preparation of hybrid spheres and tested in the dehydrogenation of ethylbenzene in the presence of CO2. The catalytic results suggest that the high initial ethylbenzene conversion is due to the contribution of basic sites. These results also point to a competitive process between CO2 adsorption and the oxidative dehydrogenation of ethylbenzene for the basic sites (lattice oxygen). In spite of the coke deposition is originating from ethylbenzene and CO2, the amount of carbonaceous deposits was smaller with the presence of CO2, if compared with the dehydrogenation in the absence of CO2.
Resumo:
The Zn-TiO2nanocomposite films were prepared by electrodeposition, using an acidic zinc sulphate solution with TiO2 nanoparticles in suspension. The as-deposited samples have been heated in air at 450 ºC for 6 h. The XRD and SEM analyses pointed out to the metal matrix conversion from Zn to ZnO and a rich morphology of needles-shaped grains. These materials were used on the photoelectrochemical degradation of AO7, which was efficiently degraded, with 40% of color removal, after 2 h period at 1.0 V, under white light irradiation. The apparent first order rate constant of the photoelectrodegradation reaction was 4.12 x 10-3 min-1.
Resumo:
Polystyrene/layered hydroxide salt (LHS) modified with sodium dodecyl sulfate was synthesized by in situ polymerization. The materials synthesized were characterized by gravimetry, X-ray diffraction (XRD), thermogravimetry analyses (TGA), differential scanning calorimetry (DSC) and the flammability test (FT). XRD demonstrated that synthesized nanocomposites in all compositions studied showed poor global dispersion of LHS in polystyrene. TGA showed a slight decrease in thermal stability. DSC curves showed that the glass transition temperature of polystyrene and nanocomposites were similar. The FT showed that the nanocomposite with low load of LHS exhibited good results.
Resumo:
Nanocomposite materials have been incorporated into biopolymers, (e.g. hydroxypropyl methylcellulose), to improve their physical and chemical properties and enable them to be applied in food packaging, especially for their biodegradable and renewable properties. With this addition, fruit puree has been incorporated into the films to confer nutritional properties besides color and flavor. Chitosan is of interest in the packaging field since it is a biodegradable, bioabsorbable, antimicrobial agent. Furthermore, chitosan nanoparticles have been widely explored for their interesting properties and potential applications in food packaging. This work was divided into two stages: (1) chitosan nanoparticle synthesis; (2) addition of nanoparticles into HPMC and papaya puree films. Addition of chitosan nanoparticles to HPMC and papaya puree films improved film properties: mechanical, thermal and water vapor barrier. We have developed a novel nanomaterial with great potential for application in packaging to prolong the shelf life of food.