26 resultados para Mutual synchronization
em Scielo Saúde Pública - SP
Resumo:
The degree of flowering and fruiting synchronization is believed to have ecological and evolutionary relevance at several scales. Here we discuss some measures that have been used to estimate synchrony and propose an index that incorporates both the entire length of an individual phenophase and variation in the number of flowers or fruits over that time period. This new index describes more accurately the phenological synchrony among individuals and populations.
Resumo:
Girolando (Gir x Holstein) is a very common dairy breed in Brazil because it combines the rusticity of Gir (Bos indicus) with the high milk yield of Holstein (Bos taurus). The ovarian follicular dynamics and hormonal treatments for synchronization of ovulation and timed artificial insemination were studied in Girolando heifers. The injection of a gonadotrophin-releasing hormone (GnRH) agonist was followed 6 or 7 days (d) later by prostaglandin F2a (PGF2a). Twenty-four hours after PGF2a injection either human chorionic gonadotropin (hCG, GPh-d6 and GPh-d7 groups) or estradiol benzoate (EB, GPE-d6 and GPE-d7 groups) was administered to synchronize ovulation and consequently allow timed artificial insemination (AI) 24 and 30 h after hCG and EB injection, respectively. Follicular dynamics in Girolando heifers was characterized by the predominance of three follicular waves (71.4%) with sizes of dominant follicles (10-13 mm) and corpus luteum (approximately 20 mm) similar to those for Bos indicus cattle. In the GnRH-PGF-hCG protocol, hCG administration induced earlier ovulation (67.4 h, P<0.01) compared to the control group (GnRH-PGF) and a better synchronization of ovulation, since most of it occurred within a period of 12 to 17 h. Pregnancy rate after timed AI was 42.8 (3/7, GPh-d6) to 50% (7/14, GPh-d7). In contrast, estradiol benzoate (GnRH-PGF-EB protocol) synchronized ovulation of only 5 of 11 heifers from the GPE-d7 group and of none (0/7) from the GPE-d6 group, which led to low pregnancy rates after timed AI (27.3 and 0%, respectively). However, since a small number of Girolando heifers was used to determine pregnancy rates in the present study, pregnancy rates should be confirmed with a larger number of animals.
Resumo:
Lung cancer often exhibits molecular changes, such as the overexpression of the ErbB1 gene that encodes epidermal growth factor receptor (EGFR). ErbB1 amplification and mutation are associated with tumor aggressiveness and low response to therapy. The aim of the present study was to design a schedule to synchronize the cell cycle of A549 cell line (a non-small cell lung cancer) and to analyze the possible association between the micronuclei (MNs) and the extrusion of ErbB1 gene extra-copies. After double blocking, by the process of fetal bovine serum deprivation and vincristine treatment, MNs formation was monitored with 5-bromo-2-deoxyuridine (BrdU) incorporation, which is an S-phase marker. Statistical analyses allowed us to infer that MNs may arise both in mitosis as well as in interphase. The MNs were able to replicate their DNA and this process seemed to be non-synchronous with the main cell nuclei. The presence of ErbB1 gene in the MNs was evaluated by fluorescent in situ hybridization (FISH). ErbB1 sequences were detected in the MNs, but a relation between the MNs formation and extrusion of amplified ErbB1could not be established. The present study sought to elucidate the meaning of MNs formation and its association with the elimination of oncogenes or other amplified sequences from the tumor cells.
Resumo:
The paper investigates the synchronization of price changes in the context of retail tire dealers in São Paulo-Brazil and selected items in supermarkets for cleaning supplies and food in Rio de Janeiro-Brazil. Results indicate similar and non-negligible synchronization for different brands, although magnitudes are distant from a perfect synchronization pattern. We find interesting patterns in inter-firm competition, with similar magnitudes across different tire types. Intra-chain synchronization is substantial, indicating that a common price adjustment policy tends to be sustained for each chain across different products.
Resumo:
ABSTRACTIn developing countries, initiatives have often been undertaken in order to fight social and environmental problems. Since the 1990s, an increase can be seen in corporate social responsibility actions, as well as increasingly strong activities by civil society organizations. Tweenty years ago, companies and civil society organizations stood wide apart from each other, with often conflicting agendas and resistance to mutual collaboration. This reality has changed significantly. Besides the phenomenon of cross-sector partnerships, we can also observe the expansion of a particular organization type, i.e., the social business, which combines two objectives that were previously seen as incompatible: financial sustainability and the generation of social value. This article aims to discuss the factors that influence the results of a social business operating in three countries: Botswana, Brazil and Jordan. The results allow understanding the challenges involved in constructing social businesses in developing countries as well as a better understanding of the very nature of those businesses, considering the social realities where they operate.
Resumo:
Na medida em que os antropólogos passaram a descrever a crescente normatividade do movimento global e a conseqüente hibridização, criolização, sincronicidade e compressão do multiculturalismo, "diáspora" tornou-se uma palavra-chave no arsenal da disciplina. Este texto aborda um traço particular dessa abordagem diaspórica, que diz respeito ao "judeu errante" exílico. Partindo do exame do "judeu" no discurso do nacionalismo moderno, desenvolve um discurso possível de urbanismo pós-nacional, a fim de concluir com uma abordagem etnográfica de vidas judaicas no ambiente canadense contemporâneo da área urbana da província de Newfoundland. Enquanto o idioma do "judeu errante" diz pouco sobre o conteúdo das vidas individuais de fato existentes, o que será que, entretanto, contém em termos de prescrição política? Qual a mensagem política embutida na noção de cosmopolitismo e transnacionalismo universal (judaico), e como esse tipo ideal pode ser empregado idealisticamente pela antropologia em favor da crítica cultural? Partindo do idioma do "judeu errante", este texto passa, assim, a delinear a "hospedagem mútua" ["mutual guesting"] como conceptualização de procedimentos sociais justos num novo sistema mundial.
Resumo:
Those over sixty years of age accounted for 6.6% of the total population of Brazil in 1985, in the Federal Republic of Germany this proportion was 20.3% in 1984. As early as 1950 it had been 14.5%. This proportion will not even be reached in Brazil in the year 2000 when persons aged sixty years and older are only projected to make up 8.8% of the total population. Similarly, in 1982/84 life expectancy at birth in the Federal Republic was 70.8 years for men and 77.5 for women; in Brazil the figures for 1980/85 were, by contrast, "only" 61.0 and 66.0. Against this background it is easy to understand why the discussion concerning an ageing society with its many related medical, economic, individual and social problems has been so slow in coming into its own in Brazil. As important as a more intensive consideration of these aspects may be in Brazil at present, they are, nevertheless, only one side of the story. For a European historical demographer with a long-term perspective of three of four hundred years, the other side of the story is just as important. The life expectancy which is almost ten years lower in Brazil is not a result of the fact that no one in Brazil lives to old age. In 1981 people sixty-five years and older accounted for 34.4% of all deaths! At the same time infants accounted for only 22.1% of total mortality. They are responsible, along with the "premature" deaths among youths and adults, for the low, "average" life expectancy figure. In Europe, by contrast, these "premature" deaths no longer play much of a role. In 1982/84 more than half of the women (52.8%) in the Federal Republic of Germany lived to see their eightieth birthdays and almost half of the men (47.3%) lived to see their seventy-fifth. Our biological existence is guaranteed to an extent today that would have been unthinkable a few generations ago. Then, the classic troika of "plague, hunger and war" threatened our forefathers all the time and everywhere. The radical transition from the formerly uncertain to a present-day certain lifetime, which is the result of the repression of "plague, hunger and war", led to unexpected consequences for our living together. Our forefathers were forced to live in closely knit Gemeinschaften in the interest of physical survival and to subordinate their egoistic goals to a common value, but now these pressures have, for the most part, fallen away. Correspondingly, this much more certain EGO has taken center stage. An ever greater number of us chooses to live life as single beings: the number of marriages is lower every year; the number of divorces is on the increase; in Berlin (West) more than half (sic! 52.3%) of all households are already composed on only one person. For the last dozen years the annual number of births in the Federal Republic has been insufficient to ensure population replacement. Not a population explosion but rather the opposite, a population implosion, is our problem. Human beings do not appear to be "social animals", as was axiomatically assumed for so long. They were only forced to behave as such for as long as "plague, hunger and war" forced them to do so. When these life endangering conditions no longer exist and life becomes certain even without their being integrated into a Gemeinschaft then humans suddenly show themselves more and more to be independent single beings. It is not the percentage of the population that is over sixty or sixty-five that is decisive in this context but rather how certain adults perceive their biological lives to be, since they are the ones who organize their lives, who build communities or who are ever more often willing only to enter into means-to-an-end personal unions without lasting or close ties and mutual responsibilities. There are many signs which seem to point to a development in this direction in Brazil as well. More and more adults in Brazil are caught up in the deep-seated transition from an uncertain to a certain lifetime. A third of them die after having reached their sixty-fifth birthday. It therefore seems to me to be high time that one began to give more consideration to the other side of the story in Brazil as well. And who is more suited intensively to consider the long-term perspectives than those engaged in the public health sector in whose competence, after all, such aspects, as "life certainty", "life expectancy" and "age at death" belong?
Resumo:
OBJECTIVE: In 1994 a pilot intergenerational project was started in the city of Taguatinga, Brazil, to promote the well-being of both elderly and adolescent populations using reminiscence processes as a means of interaction. The purpose of the study is to evaluate the project from the participants' viewpoint and to improve the contribution of those age groups in building up social capital. METHODS: From November 1999 to April 2000 a qualitative study using focus groups technique was conducted. Using a discussion guide, 9 groups of students, ranging in age from 13 to 19 years old, and 3 groups of elderly aged 60 years and over were interviewed to collect data regarding their interaction before and after an intergenerational program. RESULTS: The main findings suggested a change in attitude of young people toward old age and elderly people. Participating elderly people reported improvement in their health status. For both age groups the findings suggested a better understanding between generations. CONCLUSIONS: It seems that reminiscence intergenerational activity contributes to building up mutual trust and reciprocity. These results seem to indicate this is an alternative for investing in social capital and improving participants' well-being. However, further work is needed to support these findings.
Resumo:
FUNDAMENTO: A estimulação apical crônica do ventrículo direito pode ocasionar dessincronia ventricular e, secundariamente, alterações neuro-humorais e aumento da morbimortalidade cardíaca. OBJETIVO: Pesquisar dessincronia ventricular e seus efeitos sobre os níveis de BNP em pacientes com marca-passo estimulados cronicamente no ápice do ventrículo direito (VD). MÉTODOS: Estudo transversal com 85 pacientes com marca-passo uni ou bicameral, em classe funcional I e II da NYHA e fração de ejeção do ventrículo esquerdo (FEVE) > 35%. A avaliação de dessincronia foi realizada utilizando-se várias técnicas ecocardiográficas, incluindo o Tissue Synchronization Imaging (TSI), com análise dos 12 segmentos. O BNP foi dosado junto com o ecocardiograma, porém com o examinador cego. RESULTADOS: Quarenta e seis mulheres e 39 homens, com idade de 58 ± 12 anos, chagásicos (56%) e hipertensos controlados (62%), foram incluídos. A fração de ejeção do VE foi 52 ± 8% e a duração média do QRS de 139 ms (120-180 ms). O BNP mostrou-se alterado em 36,5% da amostra (ponto de corte de 60 pg/ml). Na análise multivariada de regressão linear, o BNP correlacionou-se com a idade (p = 0,024), FEVE (p < 0,0001) e tempo pré-ejetivo do VE (p = 0,009), que é índice de dessincronia intraventricular. CONCLUSÃO: Em pacientes com estimulação cardíaca convencional, estáveis clinicamente, a dessincronia intraventricular foi um preditor independente do aumento dos níveis de BNP, após ajuste pela idade e FEVE.
Resumo:
The male of Eneoptera surinamensis (Orthoptera-Eneopteridae) is provided with 9 chromosomes, that is, with 3 pairs of autosomes and 3 sex chromosomes. Spermatogonia. - The autosomes of the spermatogonia are of the same size and U-shaped. One of the sex chromosomes approximately equalling the autosomes in size is telocentric, while the other two are much larger and V-shaped. One of the latter is smaller than the other. The sex chromosomes as showed in Figs. 1 and 2 are designated by X, Yl and Y2, X being the larger V, Yl the smaller one and Y2 the rod-shaped. Primary spermatocytes. - Before the growth period of the spermatocytes all the three sex chromosomes are visible in a state of strong heteropycnosis. X is remarkable in this stage in having two long arms well separated by a wide commissural segment. (Figs. 4, 5 and 6). During the growth period Y2 disappears, while X and Yl remain in a condensed form until metaphase. These may be separated from one another or united in the most varied and irregular manner. (Fig. 7 to 12). In the latter case the segments in contact seem to be always different so that we cannot recognize any homology of parts in the sense os genetics. At diplotene Y2 reappears together with the autosomal tetrads. X and Yl may again be seen as separate or united elements. (Figs. 13 and 14). At later diakinesis and metaphase the three sex chromosomes are always independent from each other, Y2 being typically rod-shaped, X and Yl V-shaped, X being a little larger than Yl. (Fig. 15 to 18). At metaphase the three condensed tetrads go to the equatorial plane, while the sex chromosomes occupy any position at both sides of this plane. In almost all figures which could be perfectly analysed X appeared at one side of the autosomal plate an Yl together with Y2 far apart at the other side. (Figs. 16 and 18). Only a few exception have been found. (Figs. 17 and 19). At anaphase X goes in precession to one pole, Yl and Y2 to the other (Figs. 20 and 21). As it is suggested by the few figures in which a localization of the sex chromosomes different from the normal has been observed, the possibility of other types of segregation of these elements cannot be entirely precluded. But, if this does happen, the resulting gametes should be inviable or give inviable zygotes. Early in anaphase autosomes and sex chromosomes divide longitudinally, being maintained united only by the kinetochore. (Figs. 20 and 21). At metaphase the three sex chromosomes seem to show no special repulsion against each other, X being found in the proximity of Yl or Y2 indifferently. At anaphase, however, the evidences in hand point to a stronger repulsion between X on the one side and both Ys on the other, so that in spite of the mutual repulsion of the latter they finish by going to the same pole. Secondary spermatocytes. - At telophase of the primary spermatocytes all the chromosomes enter into distension without disappearing of view. A nuclear membrane is formed around the chromosomes. All the chromosomes excepting Y2 which has two arms, are four-branched. (Fig. 22). Soon the chromosomes enter again into contraction giving rise to the secondary metaphase plate. Secondary spermatocytes provided as expected with four and five chromosomes are abundantly found. (Figs. 23 and 24). In the former all chromosomes are X-shaped while in the latter there is one which is V-shaped. This is the rod- shaped Y2. In the anaphase of the spermatocytes with four chromosomes all the chromosomes are V-shaped, one of them (X) being much larger than the others. In those with five there is one rod-shaped chromosome (Y2). (Fig. 25), Spermatids. Two classes of spermatids are produced, one with X and other with Yl and Y2. All the autosomes as well as Y2 soon enter into solution, X remaining visible for long time in one class and Yl in the other. (Figs. 26 and 27). Since both are very alike at this stage, one cannot distinguish the two classes of spermatids. Somatic chromosomes in the famale. - In the follicular cells of the ovary 8 chromosomes were found, two of which are much larger than the rest. (Figs. 29 and 30). These are considered as being sex chromosomes. CONCLUSION: Eneoptera surinamensis has a new type of sex-determining mechanism, the male being X Yl Y2 and the female XX. The sex chromosomes segregate without entering into contact at metaphase or forming group. After a review of the other known cases of complex sex chromosome mechanism the author held that Eneoptera is the unique representative of a true determinate segregation of sex chromosomes. Y2 behaving as sex chromosome and as autosome is considered as representing an intermediary state of the evolution of the sex chromosomes.
Resumo:
In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.
Resumo:
Synchronization in the events of the reproductive cycle in female Neohelice granulata Dana, 1851 were studied from samples taken weekly and biweekly from September to December 2006 in the Laguna Mar Chiquita. The timing and larval hatching and synchronicity were inferred from numbers of ovigerous females and observing the stages of embryonic development. Synchronization in larval hatching also was observed in females in experiments in dark for a period of 48 hours, at three different salinities (10, 23 and 33 ppm). In addition plankton sampling were performed in order to study larval exportation at the field and its link to the tidal and light/dark cycles. We found that ovigerous females of N. granulata have a marked synchronization in embryonic development which results in that most of berried females are close to hatching within a period of maximum tidal range (days). Within this period, there is a synchronization of hatching at a time scale of hours, governed by environmental conditions. The salinity range used in this study (10-32) did not affect hatching synchronicity neither time to hatch. Hatching was synchronized according to endogenous rhythms governed mainly by the tidal cycle and secondarily by the breadth of it. It is also conditioned by the light-dark cycle through an exogenous cycle, so that the hatchings would occur mostly at night high tides.
Resumo:
The biological literature contains many examples of mutual influences between different species of parasites, especially with respect to concomitant helminth infections. Several situations are known in wich the association of infection by Shistosoma mansoni with other pathogens in the same host results in a type of disease wich differs from the simple summation of the individual effects of each infection. The present study concerns concomitant infections involving S. mansoni and enterobacteriaceae; S. mansoni and other helmints such as Ascaris lumbricoides, Ancylostomids, Toxocara canis and species of the genus Hymenolepis; S. mansoni and different protozoa such as Trypanosoma cruzi, T. brucei, Toxoplasma gondii and Plasmodium berghei. The interaction between hepatitis B virus and S. mansoni, leading to prolonged viremia and worsening of liver damage, is also discussed. The paper also treats the simultaneous occurrence of schistosomiasis and other aggravating factors such as malnutrition and neoplasias wich may alter the host's response to the trematode.
Resumo:
In the second segment of the antennae of haematophagous reduviids an unusual cave-like organ is found the function os which was investigated in Triatoma infestans. the morphology of the organ makes it difficult to ascribe it to a mechno- or chemoreceptive function, but shows some characteristics shared with thermoreceptors of other animals. The electrical activity of sense cells was recorded in the presence of stimuli that evoke behavioural responses in this species, i.e. warm, CO2, lactic and butyric acids at different concentrations. The three compounds tested failed to evoke a response at all concentrations assayed. Only thermal stimulation evinced a clear modification in the electrical activity of the sense cells.Both the morphological and electrophysiological findings support a thermoreceptive finding, habitat selection and circadian synchronization.
Resumo:
Two contiguous villages in Tracunhaém county (State of Pernambuco), endemic for schistosomiasis, were studied: Itapinassu (138 inhabitants) and São Joaquim (91 inhabitants). Agriculture predominates in the former region while ceramics is the main activity in the latter. Although no statistical difference was found regarding prevalence, severe infection (>400 epg) predominated in Itapinassu, probably related to the kind of occupation. No association was found between parasite burden and severity of disease, in spite of the high infection rates for Schistosoma mansoni in both communities (approx. 60%). Typical epidemiological features of schistosomiasis such as age-related prevalences and intensities of infection (high in children, low in adults) were also mutual characteristics. Nutritional status determined through anthropometric evaluation was carried out by measuring specific anthropometric indicators. A deficit of energy intake, as well as vitamin A and riboflavin deficiencies were detected. The prevalence of moderate or severe undernutrition in patients under 18 years old was 21.9% in Itapinassu and 24.1% in São Joaquim. In this group an association was found between prevalence of schistosomiasis and chronic undernutrition. Similarly, for patients over 18 year old the prevalence of undernutrition was higher than 20%. However, in this case no association between nutritional status and either prevalence of schistosomiasis or parasite burden could be detected. The two communities had not been treated for eight years.