18 resultados para Municipal Solid Waste (MSW)
em Scielo Saúde Pública - SP
Resumo:
Landfill gas emissions are one of the main sources of anthropogenic methane (CH4), a major greenhouse gas. In this paper, an economically attractive alternative to minimize greenhouse gas emissions from municipal solid waste landfills was sought. This alternative consists in special biofilters as landfill covers with oxidative capacity in the presence of CH4. To improve the quality/cost ratio of the project, compost was chosen as one of the cover substrates and soil (Typic red yellow-silt-clay Podzolic) as the other. The performance of four substrates was studied in laboratory experiments: municipal solid waste (MSW) compost, soil, and two soil-compost at different proportions. This study aimed to evaluate the suitability and environmental compatibility as a means of CH4 oxidation in biofilters. Four biofilters were constructed in 60 cm PVC tubes with an internal diameter of 10 cm. Each filter contained 2.3 L of oxidizing substrate at the beginning of the experiment. The gas used was a mixture of CH4 and air introduced at the bottom of each biofilter, at a flow of 150 mL min-1, by a flow meter. One hundred days after the beginning of the experiment, the best biofilter was the MSW compost with an oxidation rate of 990 g m-3 day-1 , corresponding to an efficiency of 44 %. It can be concluded that the four substrates studied have satisfactory oxidative capacity, and the substrates can be used advantageously as cover substrate of MSW landfills.
Resumo:
The objective of the present study was to evaluate the effects of industrial solid waste (whitewash mud) on geotechnical properties considering the following engineering parameters: California Bearing Ratio (CBR), Atterberg limits and Permeability test. Seven soil samples derived from Alagoinhas, Bahia - Brazil, were classified by the Transportation Research Board (TRB) system. Two were selected as having a great geotecnical potential classified as A-3 (0) and A-2-4 (0), whitewash mud contents 10%, 15%, 20% and 25% dry weight and medium compaction effort were studied in the laboratory testing program. The results indicated the soil denominated good gravel as being the most promising one, when stabilized with whitewash mud, reaching the best results with the dosage of 20 and 25% of whitewash mud.
Resumo:
This work aimed to access the contents and chemical forms and to estimate mobility and availability of cooper and zinc in samples from two soils (Haplortox and Paleudult) previously treated with doses of sewage sludge (SS) and municipal solid waste compost (MSWC), besides a control treatment. Largest percentages of Cu and Zn were determined in the organic matter fraction. Zn showed higher percentages of soluble and exchangeable fractions than Cu. Treatments with SS showed higher potential of Cu and Zn availability. Modifications in soil attributes due to residue application affected metal mobility and availability indexes.
Resumo:
The Municipal Station of Americana, SP, Brazil, treats a volume of 400 l s-1 of effluent, of domestic and textile origin, and produces about 20 t of sludge per day. The plant horseradish, which contains high amount of peroxidases, was able to decolorize this effluent in 2 h and the solid waste in 2 days, at concentrations of 10 and 50%, respectively. However, there was an increase in the toxicity for the bioassays with Hydra attenuatta, Selenastrum capricornutum and lettuce seeds, indicating formation of more toxic substances. Since horseradish showed the ability to decolorize these residues, it can be used as pre-treatment resulting in a sludge of less complex composition.
Resumo:
OBJECTIVE: To estimate the seroprevalence of HIV, hepatitis B and C and syphilis and to describe risk behaviors associated to their transmission among recyclable waste collectors. METHODS: A seroepidemiological survey was carried out in the city of Santos, Southeastern Brazil, in 2005. A total of 315 individuals were enrolled in the survey, of which 253 subjects underwent serological testing HIV, hepatitis B and C and syphilis. Statistical analysis consisted of univariate and bivariate analyses (cross-tabulation and odds ratio) and multivariate analysis (by logistic regression), relating HIV infection with established risk behaviors and seropositivity. RESULTS: Overall seroprevalences were: HIV, 8.9%; hepatitis B, 34.4%; hepatitis C, 12.4%; and syphilis, 18.4%. Subjects were characterized by a predominance of males with low educational and economic levels, subjected to parenteral and sexual exposures to HIV and other sexually transmitted infections. Multivariate analysis results indicated that risk factors for both sexually and parenterally related exposure were significantly associated with HIV in this community. CONCLUSIONS: Seroprevalences found in the study were approximately 10 to 12 times higher than the national average. These communities are socially marginalized and generally not recognized by national programs as potentially endangered populations.
Resumo:
Solid municipal waste contains a large volume of polymers and its final disposal is a serious environmental problem. Consequently, the recycling of the principal polymers present in the solid waste is an alternative. In this review we describe the mechanical and chemical recycling of polymers and the energy recovery from plastic wastes. Polymer recycling involves not only the development of processing technologies, but also the solution of many chemical and analytical problems. The technological, economical and social aspects of polymer recycling are also considered.
Resumo:
Phosphogysum (PG) or agricultural gypsum, a solid waste from the phosphate fertilizer industry, is used as soil amendment, especially on soils in the Cerrado region, in Brazil. This material may however contain natural radionuclides and metals which can be transferred to soils, plants and water sources. This paper presents and discusses the results of physical and chemical analyses that characterized samples of PG and compares them to the results found in two typical soils of the Cerrado, a clayey and sandy one. These analyses included: solid waste classification, evaluation of organic matter content and of P, K, Ca, Mg, and Al concentrations and of the mineralogical composition. Natural radionuclides and metal concentrations in PG and soil samples were also measured. Phosphogypsum was classified as Class II A - Not Dangerous, Not Inert, Not Corrosive and Not Reactive. The organic matter content in the soil samples was low and potential acidity high. In the mean, the specific 226Ra activity in the phosphogypsum samples (252 Bq kg-1) was below the maximum level recommended by USEPA, which is 370 Bq kg-1 for agricultural use. In addition, this study verified that natural radionuclides and metals concentrations in PG were lower than in the clayey Oxisol of Sete Lagoas, Minas Gerais, Brazil. These results indicated that the application of phosphogypsum as soil amendment in agriculture would not cause a significant impact on the environment.
Resumo:
One of the main problems faced by humanity is pollution caused by residues resulting from the production and use of goods, e.g, sewage sludge. Among the various alternatives for its disposal, the agricultural use seems promising. The purpose of this study was to evaluate the hydraulic conductivity and interaction of soil with sandy-silty texture, classified as Spodosols, from the Experimental Station Itapirema - IPA, in Goiana, state of Pernambuco, in mixtures with sewage sludge from the Mangueira Sewage Treatment Station, in the city of Recife, Pernambuco at rates of 25, 50 and 75 Mg ha-1. Tests were conducted to let water percolate the natural saturated soil and soil-sludge mixtures to characterize their physical, chemical, and microstructural properties as well as hydraulic conductivity. Statistical data analysis showed that the presence of sewage sludge in soils leads to an increase of the < 0.005 mm fraction, reduction in real specific weight and variation in optimum moisture content from 11.60 to 12.90 % and apparent specific dry weight from 17.10 and 17.50 kN m-3. In the sludge-soil mixture, the quartz grains were covered by sludge and filling of the empty soil macropores between grains. There were changes in the chemical characteristics of soil and effluent due to sewage sludge addition and a small decrease in hydraulic conductivity. The results indicate the possibility that soil acidity influenced the concentrations of the elements found in the leachate, showing higher levels at higher sludge doses. It can be concluded that the leaching degree of potentially toxic elements from the sewage sludge treatments does not harm the environment.
Resumo:
This research was developed by considering that the solid waste produced in the process of pig iron production represents the loss of raw materials and the increase in environmental problem. The charcoal based mini blast-furnace off gases dust named CHARCOK was collected from SIDERPA ¾ Siderúrgica Paulino Ltda, located in Sete Lagoas, Minas Gerais. The Charcok was characterized and classified according to ABNT (Associação Brasileira de Normas Técnicas) standard. The results showed that the Charcok should be classified as Class I Wastes ¾ "Hazard Wastes" because of its high concentration of phenols (54.5mg C6H5OH/kg). The Charcok had high concentration of iron and charcoal which can be used as energy source.
Resumo:
The tanning process in the leather industry generates very high quantities of chromium-containing solid waste ("wet blue" leather). Environmental concerns and escalating landfill-costs are becoming increasingly serious problems for the leather industry and an alternative disposal is needed. In this work, we are presenting a novel application for this solid waste, which is the removal of organic contaminants from aqueous-solution. The adsorption isotherm of "wet blue" leather waste from the AUREA tanning company in Erechim-RS (Brazil) showed that this material presents high adsorption capacities of the reactive textile dyes.
Resumo:
The plating process generates solid waste rich in heavy metals and aiming to reduce environmental impact of such waste, this work suggests a methodology for zinc reduction, through a 2(4) factorial planning, studying the influence of the following variables: acid concentration (15, 20 or 30% v/v), acid type (sulfuric or hydrochloric), acid volume (15, 20 or 25 mL) and extraction time (12, 24 or 36 h). Through this methodology it is possible to establish the optimal conditions (15 mL of a 30% hydrochloric acid concentration during 12 h) to get a 100% efficiency in zinc extraction.
Resumo:
The importance of urban solid waste integrated systems is characterized by the several components of these systems, which are, basically, formed by physical, chemical and biological methods. This article, characterizes these methods and, which is also important, identifies the several and potential environmental impacts of those techniques. It's also extremely important to make a study of the economic rentability of those infrastructures and, also, characterize the quantitative energetic contributions of some components of these systems. This study was analysed and their results are presented in this article.
Resumo:
The ornamental rock industry generates huge amounts of wastes during the process of extraction and sawing of rock blocks. The ornamental rock powder waste is a non-biodegradable material, which represents the increase in environmental problem. The waste was collected from a granitic rock sawing plant located in Santo Antônio de Pádua, Rio de Janeiro. The chemical-environmental characterization and classification of the waste were done according to ABNT standards. The results showed that the granitic rock powder waste should be classified as Class II A - "No Inert", because of its high concentrations of lead, chrome, iron and manganese.
Resumo:
The mineral waste studied was host rock from a chromite mine located in Andorinha/Bahia, extracted and stockpiled in yards without specific application. Host rock was submitted to chemical analysis, XRD, SEM-EDS, IR and TGA and classified according to ABNT standards for solid waste classification. Analyses confirmed that this host rock, classified as ultrabasic, consists mainly of dolomite, calcite and diopside. Hazard assessment results showed this host rock should be classified as class II B - inert waste, important for its potential application in agriculture as a soil acidity correction agent.