2 resultados para Multi-classifier systems
em Scielo Saúde Pública - SP
Resumo:
Long term applications of leguminous green mulch could increase mineralizable nitrogen (N) beneath cupuaçu trees produced on the infertile acidic Ultisols and Oxisols of the Amazon Basin. However, low quality standing cupuaçu litter could interfere with green mulch N release and soil N mineralization. This study compared mineral N, total N, and microbial biomass N beneath cupuaçu trees grown in two different agroforestry systems, north of Manaus, Brazil, following seven years of different green mulch application rates. To test for net interactions between green mulch and cupuaçu litter, dried gliricidia and inga leaves were mixed with senescent cupuaçu leaves, surface applied to an Oxisol soil, and incubated in a greenhouse for 162 days. Leaf decomposition, N release and soil N mineralization were periodically measured in the mixed species litter treatments and compared to single species applications. The effect of legume biomass and cupuaçu litter on soil mineral N was additive implying that recommendations for green mulch applications to cupuaçu trees can be based on N dynamics of individual green mulch species. Results demonstrated that residue quality, not quantity, was the dominant factor affecting the rate of N release from leaves and soil N mineralization in a controlled environment. In the field, complex N cycling and other factors, including soil fauna, roots, and microclimatic effects, had a stronger influence on available soil N than residue quality.
Resumo:
Non-linear functional representation of the aerodynamic response provides a convenient mathematical model for motion-induced unsteady transonic aerodynamic loads response, that accounts for both complex non-linearities and time-history effects. A recent development, based on functional approximation theory, has established a novel functional form; namely, the multi-layer functional. For a large class of non-linear dynamic systems, such multi-layer functional representations can be realised via finite impulse response (FIR) neural networks. Identification of an appropriate FIR neural network model is facilitated by means of a supervised training process in which a limited sample of system input-output data sets is presented to the temporal neural network. The present work describes a procedure for the systematic identification of parameterised neural network models of motion-induced unsteady transonic aerodynamic loads response. The training process is based on a conventional genetic algorithm to optimise the network architecture, combined with a simplified random search algorithm to update weight and bias values. Application of the scheme to representative transonic aerodynamic loads response data for a bidimensional airfoil executing finite-amplitude motion in transonic flow is used to demonstrate the feasibility of the approach. The approach is shown to furnish a satisfactory generalisation property to different motion histories over a range of Mach numbers in the transonic regime.