3 resultados para Multi Domain Information Model
em Scielo Saúde Pública - SP
Resumo:
ABSTRACT The motivation for this paper stems from the steady decline in the share of consumer expenditures on goods produced in the global south, coupled with the (empirically ambiguous) Singer/Prebisch hypothesis that this can be explained by a secular decline in the southern terms of trade. Drawing on these sources of inspiration, the paper sets out to study the dynamics of the terms of trade using a multi-sector growth model based on the principle of cumulative causation. The upshot is a North-South model of growth and trade in which the evolution of the terms of trade depends on differential rates of productivity growth in different sectors of the economy - and in which terms of trade dynamics may not be the best guide as to whether or not there is an uneven development problem.
Resumo:
ABSTRACT One of the most relevant activities of Brazilian economy is agriculture. Among the main crops in Brazil, rice is one of high relevance. The state of Rio Grande do Sul, in Southern Brazil, is responsible for 68.7% of domestic production (IBGE, 2013). The goal of this study was to develop a low-cost methodology with a regional scope to identify suitable areas for irrigated rice cropping in this state, using spectro-temporal behavior of vegetation index by means of MODIS images and HAND model. The rice-cropped area of this study was the southern half of the State. Using the HAND model, flood areas were mapped to identify irrigated rice cultivation. We used multi-temporal images of vegetation index from MODIS sensor, covering the period from August 2001 to May 2012. To assess the results, we used data collected in the fields and cropped area information from IBGE. The results showed that the proposed methodology was satisfactory, with Kappa 0.92 and global accuracy of 98.18%. As result, MODIS sensor data and flood areas delineation by means of HAND model generated the estimate irrigated rice area for the area of study.
Resumo:
Motivated by a recently proposed biologically inspired face recognition approach, we investigated the relation between human behavior and a computational model based on Fourier-Bessel (FB) spatial patterns. We measured human recognition performance of FB filtered face images using an 8-alternative forced-choice method. Test stimuli were generated by converting the images from the spatial to the FB domain, filtering the resulting coefficients with a band-pass filter, and finally taking the inverse FB transformation of the filtered coefficients. The performance of the computational models was tested using a simulation of the psychophysical experiment. In the FB model, face images were first filtered by simulated V1- type neurons and later analyzed globally for their content of FB components. In general, there was a higher human contrast sensitivity to radially than to angularly filtered images, but both functions peaked at the 11.3-16 frequency interval. The FB-based model presented similar behavior with regard to peak position and relative sensitivity, but had a wider frequency band width and a narrower response range. The response pattern of two alternative models, based on local FB analysis and on raw luminance, strongly diverged from the human behavior patterns. These results suggest that human performance can be constrained by the type of information conveyed by polar patterns, and consequently that humans might use FB-like spatial patterns in face processing.