19 resultados para Motion compensated frame interpolation
em Scielo Saúde Pública - SP
Resumo:
Coagulation abnormality is frequently observed in schistosomiasis patients but its pathophysiology has not been established. We measured, by immunodiffusion. the prothrombin-antigen concentration in 56 individuals; of these 19 with demonstrated compensated form of hepatosplenic schistosomiasis, 17 with cirrhosis and 20 were control subjects. Transaminases, albumin, transthyretin, prothrombin time, antithrombin III, factor VII, and fibrinogen were also evaluated. All parameters were altered in the cirrhotic group but only albumin, prothrombin and antithrombin III levels were altered in the schistosomiasis group. Ninety percent of the patients with cirrhosis and sixty percent of the patients with schistosomiasis had abnormal plasma levels of albumin, transthyretin, prothrombin-antigen, and/or antithrombin III; an impaired hepatic synthesis was responsible for these results. Conversely forty percent of the schistosomiasis patients with normal plasma concentrations of both albumin and transthyretin had decreased mean plasma levels of both prothrombin and antithrombin III. These results suggest that either proth rombin and antithrombin III are more sensitive markers of impaired hepatic synthesis in schistosomiasis than are levels of albumin and transthyretin combined, or a low grade chronic consumption of clotting proteins also occurs. Considering the latter hypothesis it is possible that the thrombin formed would be inhibited by antithrombin III with the complexed thrombin-antithrombin III being cleared by the liver. Consequently the plasma levels of both prothrombin and antithrombin would be decreased, but the level of fibrinogen would be preserved.
Resumo:
The graphical representation of spatial soil properties in a digital environment is complex because it requires a conversion of data collected in a discrete form onto a continuous surface. The objective of this study was to apply three-dimension techniques of interpolation and visualization on soil texture and fertility properties and establish relationships with pedogenetic factors and processes in a slope area. The GRASS Geographic Information System was used to generate three-dimensional models and ParaView software to visualize soil volumes. Samples of the A, AB, BA, and B horizons were collected in a regular 122-point grid in an area of 13 ha, in Pinhais, PR, in southern Brazil. Geoprocessing and graphic computing techniques were effective in identifying and delimiting soil volumes of distinct ranges of fertility properties confined within the soil matrix. Both three-dimensional interpolation and the visualization tool facilitated interpretation in a continuous space (volumes) of the cause-effect relationships between soil texture and fertility properties and pedological factors and processes, such as higher clay contents following the drainage lines of the area. The flattest part with more weathered soils (Oxisols) had the highest pH values and lower Al3+ concentrations. These techniques of data interpolation and visualization have great potential for use in diverse areas of soil science, such as identification of soil volumes occurring side-by-side but that exhibit different physical, chemical, and mineralogical conditions for plant root growth, and monitoring of plumes of organic and inorganic pollutants in soils and sediments, among other applications. The methodological details for interpolation and a three-dimensional view of soil data are presented here.
Resumo:
The objective of this work was to build mock-ups of complete yerba mate plants in several stages of development, using the InterpolMate software, and to compute photosynthesis on the interpolated structure. The mock-ups of yerba-mate were first built in the VPlants software for three growth stages. Male and female plants grown in two contrasting environments (monoculture and forest understory) were considered. To model the dynamic 3D architecture of yerba-mate plants during the biennial growth interval between two subsequent prunings, data sets of branch development collected in 38 dates were used. The estimated values obtained from the mock-ups, including leaf photosynthesis and sexual dimorphism, are very close to those observed in the field. However, this similarity was limited to reconstructions that included growth units from original data sets. The modeling of growth dynamics enables the estimation of photosynthesis for the entire yerba mate plant, which is not easily measurable in the field. The InterpolMate software is efficient for building yerba mate mock-ups.
Resumo:
Abstract Objective: To evaluate the rectal volume influence on prostate motion during three-dimensional conformal radiotherapy (3D-CRT) for prostate cancer. Materials and Methods: Fifty-one patients with prostate cancer underwent a series of three computed tomography scans including an initial planning scan and two subsequent scans during 3D-CRT. The organs of interest were outlined. The prostate contour was compared with the initial CT images considering the anterior, posterior, superior, inferior and lateral edges of the organ. Variations in the anterior limits and volume of the rectum were assessed and correlated with prostate motion in the anteroposterior direction. Results: The maximum range of prostate motion was observed in the superoinferior direction, followed by the anteroposterior direction. A significant correlation was observed between prostate motion and rectal volume variation ( p = 0.037). A baseline rectal volume superior to 70 cm3 had a significant influence on the prostate motion in the anteroposterior direction ( p = 0.045). Conclusion: The present study showed a significant interfraction motion of the prostate during 3D-CRT with greatest variations in the superoinferior and anteroposterior directions, and that a large rectal volume influences the prostate motion with a cutoff value of 70 cm3. Therefore, the treatment of patients with a rectal volume > 70 cm3 should be re-planned with appropriate rectal preparation.
Resumo:
Abstract Objective: To evaluate three-dimensional translational setup errors and residual errors in image-guided radiosurgery, comparing frameless and frame-based techniques, using an anthropomorphic phantom. Materials and Methods: We initially used specific phantoms for the calibration and quality control of the image-guided system. For the hidden target test, we used an Alderson Radiation Therapy (ART)-210 anthropomorphic head phantom, into which we inserted four 5mm metal balls to simulate target treatment volumes. Computed tomography images were the taken with the head phantom properly positioned for frameless and frame-based radiosurgery. Results: For the frameless technique, the mean error magnitude was 0.22 ± 0.04 mm for setup errors and 0.14 ± 0.02 mm for residual errors, the combined uncertainty being 0.28 mm and 0.16 mm, respectively. For the frame-based technique, the mean error magnitude was 0.73 ± 0.14 mm for setup errors and 0.31 ± 0.04 mm for residual errors, the combined uncertainty being 1.15 mm and 0.63 mm, respectively. Conclusion: The mean values, standard deviations, and combined uncertainties showed no evidence of a significant differences between the two techniques when the head phantom ART-210 was used.
Resumo:
This work deals with an hybrid PID+fuzzy logic controller applied to control the machine tool biaxial table motions. The non-linear model includes backlash and the axis elasticity. Two PID controllers do the primary table control. A third PID+fuzzy controller has a cross coupled structure whose function is to minimise the trajectory contour errors. Once with the three PID controllers tuned, the system is simulated with and without the third controller. The responses results are plotted and compared to analyse the effectiveness of this hybrid controller over the system. They show that the proposed methodology reduces the contour error in a proportion of 70:1.
Multiple scales analysis of nonlinear oscillations of a portal frame foundation for several machines
Resumo:
An analytical study of the nonlinear vibrations of a multiple machines portal frame foundation is presented. Two unbalanced rotating machines are considered, none of them resonant with the lower natural frequencies of the supporting structure. Their combined frequencies is set in such a way as to excite, due to nonlinear behavior of the frame, either the first anti-symmetrical mode (sway) or the first symmetrical mode. The physical and geometrical characteristics of the frame are chosen to tune the natural frequencies of these two modes into a 1:2 internal resonance. The problem is reduced to a two degrees of freedom model and its nonlinear equations of motions are derived via a Lagrangian approach. Asymptotic perturbation solutions of these equations are obtained via the Multiple Scales Method.
Resumo:
The main objective of this work is to analyze the importance of the gas-solid interface transfer of the kinetic energy of the turbulent motion on the accuracy of prediction of the fluid dynamic of Circulating Fluidized Bed (CFB) reactors. CFB reactors are used in a variety of industrial applications related to combustion, incineration and catalytic cracking. In this work a two-dimensional fluid dynamic model for gas-particle flow has been used to compute the porosity, the pressure, and the velocity fields of both phases in 2-D axisymmetrical cylindrical co-ordinates. The fluid dynamic model is based on the two fluid model approach in which both phases are considered to be continuous and fully interpenetrating. CFB processes are essentially turbulent. The model of effective stress on each phase is that of a Newtonian fluid, where the effective gas viscosity was calculated from the standard k-epsilon turbulence model and the transport coefficients of the particulate phase were calculated from the kinetic theory of granular flow (KTGF). This work shows that the turbulence transfer between the phases is very important for a better representation of the fluid dynamics of CFB reactors, especially for systems with internal recirculation and high gradients of particle concentration. Two systems with different characteristics were analyzed. The results were compared with experimental data available in the literature. The results were obtained by using a computer code developed by the authors. The finite volume method with collocated grid, the hybrid interpolation scheme, the false time step strategy and SIMPLEC (Semi-Implicit Method for Pressure Linked Equations - Consistent) algorithm were used to obtain the numerical solution.
Resumo:
In this paper we present a study of feasibility by using Cassino Parallel Manipulator (CaPaMan) as an earthquake simulator. We propose a suitable formulation to simulate the frequency, amplitude and acceleration magnitude of seismic motion by means of the movable platform motion by giving a suitable input motion. In this paper we have reported numerical simulations that simulate the three principal earthquake types for a seismic motion: one at the epicenter (having a vertical motion), another far from the epicenter (with the motion on a horizontal plane), and a combined general motion (with a vertical and horizontal motion).
Resumo:
We apply the Bogoliubov Averaging Method to the study of the vibrations of an elastic foundation, forced by a Non-ideal energy source. The considered model consists of a portal plane frame with quadratic nonlinearities, with internal resonance 1:2, supporting a direct current motor with limited power. The non-ideal excitation is in primary resonance in the order of one-half with the second mode frequency. The results of the averaging method, plotted in time evolution curve and phase diagrams are compared to those obtained by numerically integrating of the original differential equations. The presence of the saturation phenomenon is verified by analytical procedures.
Resumo:
Production machines for next generation LSIs such as 4G-DRAMs and for large liquid crystal displays such as 0.5mx0.5m size, and information equipment such as magnetic hard disks and DVDs must have the positioning accuracy of a nano-meter order. To realize such a high degree of the positioning accuracy, not only precision machine elements and mechanisms but also high precision sensors, actuators and controller design techniques becomes crucial. This paper introduces recent topics of precision positioning and motion control technology in Japan.
Resumo:
The objective of the present study was to evaluate incentive spirometers using volume- (Coach and Voldyne) and flow-oriented (Triflo II and Respirex) devices. Sixteen healthy subjects, 24 ± 4 years, 62 ± 12 kg, were studied. Respiratory variables were obtained by respiratory inductive plethysmography, with subjects in a semi-reclined position (45º). Tidal volume, respiratory frequency, minute ventilation, inspiratory duty cycle, mean inspiratory flow, and thoracoabdominal motion were measured. Statistical analysis was performed with Kolmogorov-Smirnov test, t-test and ANOVA. Comparison between the Coach and Voldyne devices showed that larger values of tidal volume (1035 ± 268 vs 947 ± 268 ml, P = 0.02) and minute ventilation (9.07 ± 3.61 vs 7.49 ± 2.58 l/min, P = 0.01) were reached with Voldyne, whereas no significant differences in respiratory frequency were observed (7.85 ± 1.24 vs 8.57 ± 1.89 bpm). Comparison between flow-oriented devices showed larger values of inspiratory duty cycle and lower mean inspiratory flow with Triflo II (0.35 ± 0.05 vs 0.32 ± 0.05 ml/s, P = 0.00, and 531 ± 137 vs 606 ± 167 ml/s, P = 0.00, respectively). Abdominal motion was larger (P < 0.05) during the use of volume-oriented devices compared to flow-oriented devices (52 ± 11% for Coach and 50 ± 9% for Voldyne; 43 ± 13% for Triflo II and 44 ± 14% for Respirex). We observed that significantly higher tidal volume associated with low respiratory frequency was reached with Voldyne, and that there was a larger abdominal displacement with volume-oriented devices.
Resumo:
The present study describes an auxiliary tool in the diagnosis of left ventricular (LV) segmental wall motion (WM) abnormalities based on color-coded echocardiographic WM images. An artificial neural network (ANN) was developed and validated for grading LV segmental WM using data from color kinesis (CK) images, a technique developed to display the timing and magnitude of global and regional WM in real time. We evaluated 21 normal subjects and 20 patients with LVWM abnormalities revealed by two-dimensional echocardiography. CK images were obtained in two sets of viewing planes. A method was developed to analyze CK images, providing quantitation of fractional area change in each of the 16 LV segments. Two experienced observers analyzed LVWM from two-dimensional images and scored them as: 1) normal, 2) mild hypokinesia, 3) moderate hypokinesia, 4) severe hypokinesia, 5) akinesia, and 6) dyskinesia. Based on expert analysis of 10 normal subjects and 10 patients, we trained a multilayer perceptron ANN using a back-propagation algorithm to provide automated grading of LVWM, and this ANN was then tested in the remaining subjects. Excellent concordance between expert and ANN analysis was shown by ROC curve analysis, with measured area under the curve of 0.975. An excellent correlation was also obtained for global LV segmental WM index by expert and ANN analysis (R² = 0.99). In conclusion, ANN showed high accuracy for automated semi-quantitative grading of WM based on CK images. This technique can be an important aid, improving diagnostic accuracy and reducing inter-observer variability in scoring segmental LVWM.
Resumo:
Recent data from our laboratory have shown that patients with the indeterminate form of Chagas' disease can have impairment of left ventricular contractility, as evaluated by the slope of the left ventricle end-systolic pressure-dimension relationship. We also showed that Chagas' disease patients with minimal baseline wall motion abnormalities detected by two-dimensional echocardiography have more intense contractility impairment when compared to patients with the indeterminate form of the disease without this abnormality. The prognostic implications of these findings have not been established. We evaluated 59 patients (37-76 years, mean = 55 years) with different clinical forms of Chagas' disease, who had normal left ventricular global systolic function at baseline (57.6 ± 6.9%) and who had at least one additional echo during clinical follow-up (0.4-17.6; mean 4.6 years). Group 1 consisted of 14 patients with minor baseline left ventricle wall motion abnormalities and group 2 consisted of 45 patients without these abnormalities. During follow-up, global left ventricle systolic function deterioration was observed in 10 group 1 patients (71.4%) and in only 10 group 2 patients (22.2%; P < 0.005). Age and duration of follow-up were not independent determinants of left ventricular function deterioration in these patients. The present data indicate that mild segmental left ventricular wall motion abnormalities are associated with worsening of systolic function in Chagas' disease patients who have normal baseline global systolic performance.