6 resultados para Monosodium iodoacetate
em Scielo Saúde Pública - SP
Resumo:
Different levels of insulin sensitivity have been described in several animal models of obesity as well as in humans. Monosodium glutamate (MSG)-obese mice were considered not to be insulin resistant from data obtained in oral glucose tolerance tests. To reevaluate insulin resistance by the intravenous glucose tolerance test (IVGTT) and by the clamp technique, newborn male Wistar rats (N = 20) were injected 5 times, every other day, with 4 g/kg MSG (N = 10) or saline (control; N = 10) during the first 10 days of age. At 3 months, the IVGTT was performed by injecting glucose (0.75 g/kg) through the jugular vein into freely moving rats. During euglycemic clamping plasma insulin levels were increased by infusing 3 mU . kg-1 . min-1 of regular insulin until a steady-state plateau was achieved. The basal blood glucose concentration did not differ between the two experimental groups. After the glucose load, increased values of glycemia (P<0.001) in MSG-obese rats occurred at minute 4 and from minute 16 to minute 32. These results indicate impaired glucose tolerance. Basal plasma insulin levels were 39.9 ± 4 µU/ml in control and 66.4 ± 5.3 µU/ml in MSG-obese rats. The mean post-glucose area increase of insulin was 111% higher in MSG-obese than in control rats. When insulinemia was clamped at 102 or 133 µU/ml in control and MSG rats, respectively, the corresponding glucose infusion rate necessary to maintain euglycemia was 17.3 ± 0.8 mg . kg-1 . min-1 for control rats while 2.1 ± 0.3 mg . kg-1 . min-1 was sufficient for MSG-obese rats. The 2-h integrated area for total glucose metabolized, in mg . min . dl-1, was 13.7 ± 2.3 vs 3.3 ± 0.5 for control and MSG rats, respectively. These data demonstrate that MSG-obese rats develop insulin resistance to peripheral glucose uptake
Resumo:
Background: Obesity is defined by excessive accumulation of body fat relative to lean tissue. Studies during the last few years indicate that cardiac function in obese animals may be preserved, increased or diminished. Objective: Study the energy balance of the myocardium with the hypothesis that the increase in fatty acid oxidation and reduced glucose leads to cardiac dysfunction in obesity. Methods: 30-day-old male Wistar rats were fed standard and hypercaloric diet for 30 weeks. Cardiac function and morphology were assessed. In this paper was viewed the general characteristics and comorbities associated to obesity. The structure cardiac was determined by weights of the heart and left ventricle (LV). Myocardial function was evaluated by studying isolated papillary muscles from the LV, under the baseline condition and after inotropic and lusitropic maneuvers: myocardial stiffness; postrest contraction; increase in extracellular Ca2+ concentration; change in heart rate and inhibitor of glycolytic pathway. Results: Compared with control group, the obese rats had increased body fat and co-morbities associated with obesity. Functional assessment after blocking iodoacetate shows no difference in the linear regression of DT, however, the RT showed a statistically significant difference in behavior between the control and the obese group, most notable being the slope in group C. Conclusion: The energy imbalance on obesity did not cause cardiac dysfunction. On the contrary, the prioritization of fatty acids utilization provides protection to cardiac muscle during the inhibition of glycolysis, suggesting that this pathway is fewer used by obese cardiac muscle.
Resumo:
In order to evaluate the direct-method test of sensitivity to drugs used in the principal tuberculosis treatment regimes, in the Organon Teknika MB/BacT system, we tested 50 sputum samples positive to microscopy taken from patients with pulmonary tuberculosis and with clinical indications for an antibiogram, admitted sequentially for examination during the routine of the reference laboratory. The material was treated v/v with 23% trisodium phosphate solution, incubated for 24 h at 35°C, and neutralized v/v with 20% monosodium phosphate solution. The material was then centrifuged and the sediment inoculated into flasks containing Rifampin - 2 µg/ml, Isoniazid - 0.2 µg/ml, Pyrazinamide - 100 µg/ml, Ethambutol - 2.5 µg/ml, Ethionamide - 1.25 µg/ml, and Streptomycin - 2 µg/ml. The tests were evaluated using the indirect method in the BACTEC 460 TB (Becton Dickinson) system as the gold standard. The results showed that the Rifampin test performed best, i.e., 100% sensitivity at 95% Confidence Interval (82.2-100) and 100% specificity at 95% Confidence Interval (84.5-100), followed by Isoniazid and Pyrazinamide. In this experiment, 92% of the materials showed a final reading in 30 days; this period represents the time for primary isolation as well as the results of the sensitivity profile, and is within Centers for Disease Control and Prevention recommendations regarding time for performance of the antibiogram. The inoculated flasks showed no contamination during the experiment. The MB/BacT is shown to be a reliable, rapid, fully automated nonradiometric system for the tuberculosis antibiogram.
Resumo:
Chemical modifications were used to identify some of the functionally important amino acid residues of the potato plant uncoupling protein (StUCP). The proton-dependent swelling of potato mitochondria in K+-acetate in the presence of linoleic acid and valinomycin was inhibited by mersalyl (Ki = 5 µM) and other hydrophilic SH reagents such as Thiolyte MB, iodoacetate and 5,5'-dithio-bis-(2-nitrobenzoate), but not by hydrophobic N-ethylmaleimide. This pattern of inhibition by SH reagents was similar to that of brown adipose tissue uncoupling protein (UCP1). As with UCP1, the arginine reagent 2,3-butadione, but not N-ethylmaleimide or other hydrophobic SH reagents, prevented the inhibition of StUCP-mediated transport by ATP in isolated potato mitochondria or with reconstituted StUCP. The results indicate that the most reactive amino acid residues in UCP1 and StUCP are similar, with the exception of N-ethylmaleimide-reactive cysteines in the purine nucleotide-binding site.
Resumo:
The aim of the present study was to assess the reproductive parameters of obese Wistar rats and to determine the frequency of their obese adult offspring. Neonatal rats were divided into two groups: F1 generation, induced to obesity by monosodium glutamate (MSG; F1MSG, N = 30), and rats given saline (F1CON, N = 13). At 90 days of age all animals were mated, producing the F2 offspring (F2CON, N = 28; F2MSG, N = 15). Reproductive parameters (fertility, pregnancy, and delivery indexes) were evaluated in F1 rats. F2 newborns were weighed, and the obesity parameter for F1 and F2 generations was determined from months 5 to 7 of life. At month 7, periovarian fat was weighed and no differences were found. Mean newborn weight also did not differ. The F1 and F2MSG groups presented approximately 90% of obese rats since month 5 of life, whereas F1 and F2CON groups presented only 33%. There was no difference in periovarian weight among groups. Although obesity did not affect reproductive parameters, obese dams (F1MSG) were responsible for the appearance of obesity in the subsequent generation. Thus, obesity induced by neonatal MSG administration did not interfere with reproduction, but did provide a viable model for obesity in second-generation adult Wistar rats. This model might contribute to a better understanding of the pathophysiological mechanisms involved in transgenerational obesity.
Resumo:
The parasympathetic nervous system is important for β-cell secretion and mass regulation. Here, we characterized involvement of the vagus nerve in pancreatic β-cell morphofunctional regulation and body nutrient homeostasis in 90-day-old monosodium glutamate (MSG)-obese rats. Male newborn Wistar rats received MSG (4 g/kg body weight) or saline [control (CTL) group] during the first 5 days of life. At 30 days of age, both groups of rats were submitted to sham-surgery (CTL and MSG groups) or subdiaphragmatic vagotomy (Cvag and Mvag groups). The 90-day-old MSG rats presented obesity, hyperinsulinemia, insulin resistance, and hypertriglyceridemia. Their pancreatic islets hypersecreted insulin in response to glucose but did not increase insulin release upon carbachol (Cch) stimulus, despite a higher intracellular Ca2+ mobilization. Furthermore, while the pancreas weight was 34% lower in MSG rats, no alteration in islet and β-cell mass was observed. However, in the MSG pancreas, increases of 51% and 55% were observed in the total islet and β-cell area/pancreas section, respectively. Also, the β-cell number per β-cell area was 19% higher in MSG rat pancreas than in CTL pancreas. Vagotomy prevented obesity, reducing 25% of body fat stores and ameliorated glucose homeostasis in Mvag rats. Mvag islets demonstrated partially reduced insulin secretion in response to 11.1 mM glucose and presented normalization of Cch-induced Ca2+ mobilization and insulin release. All morphometric parameters were similar among Mvag and CTL rat pancreases. Therefore, the higher insulin release in MSG rats was associated with greater β-cell/islet numbers and not due to hypertrophy. Vagotomy improved whole body nutrient homeostasis and endocrine pancreatic morphofunction in Mvag rats.