25 resultados para Molecularly-imprinted
em Scielo Saúde Pública - SP
Resumo:
MIPs are synthetic polymers that are used as biomimetic materials simulating the mechanism verified in natural entities such as antibodies and enzymes. Although MIPs have been successfully used as an outstanding tool for enhancing the selectivity or different analytical approaches, such as separation science and electrochemical and optical sensors, several parameters must be optimized during their synthesis. Therefore, the state-of-the-art of MIP production as well as the different polymerization methods are discussed. The potential selectivity of MIPs in the extraction and separation techniques focusing mainly on environmental, clinical and pharmaceutical samples as applications for analytical purposes is presented.
Resumo:
The aim of this paper is the description of the strategies and advances in the use of MIP in the development of chemical sensors. MIP has been considered an emerging technology, which allows the synthesis of materials that can mimic some highly specific natural receptors such as antibodies and enzymes. In recent years a great number of publications have demonstrated a growth in their use as sensing phases in the construction of sensors . Thus, the MIP technology became very attractive as a promising analytical tool for the development of sensors.
Resumo:
Styrene is used in a variety of chemical industries. Environmental and occupational exposures to styrene occur predominantly through inhalation. The major metabolite of styrene is present in two enantiomeric forms, chiral R- and S- hydroxy-1-phenyl-acetic acid (R-and S-mandelic acid, MA). Thus, the concentration of MA, particularly of its enantiomers, has been used in urine tests to determine whether workers have been exposed to styrene. This study describes a method of analyzing mandelic acid using molecular imprinting techniques and HPLC detection to perform the separation of diastereoisomers of mandelic acid. The molecularly imprinted polymer (MIP) was prepared by non-covalent molecular imprinting using (+) MA, (-) MA or (+) phenylalanine, (-) phenylalanine as templates. Methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) were copolymerized in the presence of the template molecules. The bulk polymerization was carried out at 4ºC under UV radiation. The resulting MIP was grounded into 25~44¼m particles, which were slurry packed into analytical columns. After the template molecules were removed, the MIP-packed columns were found to be effective for the chromatographic resolution of (±)-mandelic acid. This method is simpler and more convenient than other chromatographic methods.
Resumo:
Molecularly imprinted polymers (MIPs) consist of synthetic macromolecular matrix, obtained through molecular imprinting-based methods that show ability to selectively recognize important biological molecules and its application in the drug delivery field is under development. In the present review the main aspects related to the synthesis and characterization of MIPs are studied. The fundamental variables participating in the synthesis process, such as template molecule, functional monomers, cross-linking agents, solvents and imprinting approaches are discussed. Moreover, the main available methods for MIPs chemical and morphological characterization are presented and the importance of the obtained information is discussed.
Resumo:
This paper describes selective molecularly imprinted solid-phase extraction of ttMA from urine samples followed by derivatization and analysis by gas chromatography/mass spectrometry (GC/MS). The analytical calibration curve ranged from 0.3 to 7.0 mg L-1 (r = 0.999) and the limit of quantitation (LOQ) was 0.3 mg L-1. The method was applied for the determination of ttMA in urine samples from smokers and concentrations detected ranged from < LOQ to 1.64 mg L-1. Thus, the proposed method proved adequate for the determination of urinary ttMA in the biomonitoring of occupational exposure to low levels of benzene.
Resumo:
Chemical imprinting technology has been widely used as a valuable tool in selective recognition of a given target analyte (molecule or metal ion), yielding a notable advance in the development of new analytical protocols. Since their discovery, molecularly imprinted polymers (MIPs) have been extensively studied with excellent reviews published. However, studies involving ion imprinted polymers (IIPs), in which metal ions are recognized in the presence of closely related inorganic ions, remain scarce. Thus, this review involved a survey of different synthetic approaches for preparing ion imprinted adsorbents and their application for the development of solid phase extraction methods, metal ion sensors (electrodes and optodes) and selective membranes.
Resumo:
In this paper, we describe the synthesis of an ion imprinted polymer (IIP) by homogeneous polymerization and its use in solid-phase to extract and preconcentrate zinc ions. Under optimal conditions (pH 5.0, preconcentration flow rate of 12.0 mL min-1, and eluted with 1.0 mol L-1 HNO3) this procedure allows the determination of zinc with an enrichment factor of 10.2, and with limits of detection and quantification of 1.5 and 5.0 µg L-1, respectively. The accuracy of our results was confirmed by analysis of tap water and certified reference materials: NIST 1570a (Spinach leaves) and NIST 1515 (Apple leaves).
Resumo:
Bartonella henselae is associated with a wide spectrum of clinical manifestations, including cat scratch disease, endocarditis and meningoencephalitis, in immunocompetent and immunocompromised patients. We report the first molecularly confirmed case of B. henselae infection in an AIDS patient in state of Rio de Janeiro, Brazil. Although DNA sequence of B. henselae has been detected by polymerase chain reaction in a lymph node biopsy, acute and convalescent sera were nonreactive.
Resumo:
This study evaluated the possibility of inoculation and reinoculation with a trypanosomatid isolated from bats that is morphologically, biologically and molecularly similar to Trypanosoma cruzi, to protect against infection by virulent strains. Non-isogenic mice were divided into 24 groups that received from zero to three inoculations of Trypanosoma cruzi-like strain RM1, in the presence or absence of Freund's adjuvant, and were challenged with the VIC or JG strains of Trypanosoma cruzi. Parasitemia and survival were monitored and animals were sacrificed for histopathological analysis. Animals immunized with Trypanosoma cruzi-like strain RM1 presented decreased parasitemia, independently of the number of inoculations or the presence of adjuvant. In spite of this reduction, these animals did not present any protection against histopathological lesions. Severe eosinophilic infiltrate was observed and was correlated with the number of inoculations of Trypanosoma cruzi-like strain RM1. These findings suggest that prior inoculation with this strain did not protect against infection but, rather, aggravated the tissue inflammatory process.
Resumo:
ABSTRACTINTRODUCTION:In this study, the molecular characteristics of group A rotavirus (RVA) were compared in samples obtained before and after RVA vaccine-introduction in Brazil.METHODS:Eighty samples were screened for the presence of RVA. Positive samples were molecularly analyzed.RESULTS:RVA positivity was 16.9%, with a predominance of G2P[4]. Periods: pre-vaccination: predominance of IId (G1), IId (G2) lineages, and I1 and E1 genotypes; post-vaccination: predominance of Ib (G1), IIa, and IIc (G2) lineages and I2 and E2 genotypes.CONCLUSIONS:Although changes in RVA-circulation pattern were observed in the post-vaccination period, it could not be attributed to vaccination process.
Resumo:
In Colombia, five Biomphalaria planorbid species are known: B. kuhniana, B. straminea, B. peregrina, B. canonica and B. oligoza(var. B. philippiana). Among them, B. straminea is intermediate host of Schistosoma mansoni and B. peregrina has been found to be experimentally susceptible to this parasite. B. straminea is commonly confused with B. kuhniana and they have been clustered together with B. intermedia in the complex named B. straminea. The difficulties involved in the specific identification, based on morphological data, have motivated the use of new techniques as auxiliary tools in cases of inconclusive morphological identification of such planorbid. In the present study, five Biomphalaria populations from the Colombian Amazon region and from Interandian Valleys were morphologically identified and characterized by polymerase chain reaction-restriction fragment lenght polymorphism directed at the internal transcribed spacer region of the rRNA gene, followed by digestion of the generated fragment with restriction enzymes (DdeI, AluI, RsaI, MvaI and HaeIII). Known profiles of the Brazilian species B. straminea, B. peregrina, B. kuhniana, B. intermedia and B. amazonica, besides B. kuhniana from Colombia, were used for comparison. The five populations under study were morphologically and molecularly identified as B. kuhniana and B. amazonica.
Resumo:
Several protozoan parasites exist in the Trypanosomatidae family, including various agents of human diseases. Multiple lines of evidence suggest that important differences are present between the translational and mRNA processing (trans splicing) systems of trypanosomatids and other eukaryotes. In this context, certain small complexes of RNA and protein, which are named small nuclear ribonucleoproteins (U snRNPs), have an essential role in pre-mRNA processing, mainly during splicing. Even though they are well defined in mammals, snRNPs are still not well characterized in trypanosomatids. This study shows that a U5-15K protein is highly conserved among various trypanosomatid species. Tandem affinity pull-down assays revealed that this protein interacts with a novel U5-102K protein, which suggests the presence of a sub-complex that is potentially involved in the assembly of U4/U6-U5 tri-snRNPs. Functional analyses showed that U5-15K is essential for cell viability and is somehow involved with the trans and cis splicing machinery. Similar tandem affinity experiments with a trypanonosomatid U5-Cwc21 protein led to the purification of four U5 snRNP specific proteins and a Sm core, suggesting U5-Cwc-21 participation in the 35S U5 snRNP particle. Of these proteins, U5-200K was molecularly characterized. U5-200K has conserved domains, such as the DEAD/DEAH box helicase and Sec63 domains and displays a strong interaction with U5 snRNA.
Resumo:
For the first time, we used multilocus sequence typing (MLST) to understand how Romanian group B streptococcus (GBS) strains fit into the global GBS population structure. Colonising isolates recovered from adult human females were tested for antibiotic resistance, were molecularly serotyped based on the capsular polysaccharide synthesis (cps) gene cluster and further characterised using a set of molecular markers (surface protein genes, pilus-encoded islands and mobile genetic elements inserted in the scpB-lmb intergenic region). Pulsed-field gel electrophoresis was used to complement the MLST clonal distribution pattern of selected strains. Among the 55 strains assigned to six cps types (Ia, Ib, II-V), 18 sequence types (STs) were identified by MLST. Five STs represented new entries to the MLST database. The prevalent STs were ST-1, ST-17, ST-19 and ST-28. Twenty molecular marker profiles were identified. The most common profiles (rib+GBSi1+PI-1, rib+GBSi1+PI-1, PI-2b and alp2/3+PI-1, PI-2a) were associated with the cps III/ST-17 and cps V/ST-1 strains. A cluster of fluoroquinolone-resistant strains was detected among the cps V/ST-19 members; these strains shared alp1 and IS1548 and carried PI-1, PI-2a or both. Our results support the usefulness of implementing an integrated genotyping system at the reference laboratory level to obtain the reliable data required to make comparisons between countries.
Resumo:
In the last decades, the use of plant growth-promoting rhizobacteria has become an alternative to improve crop production. Rhizobium leguminosarum biovar trifolii is one of the most promising rhizobacteria and is even used with non-legume plants. This study investigated in vitro the occurrence of plant growth-promoting characteristics in several indigenous R. leguminosarum biovar trifolii isolated from soils in the State of Rio Grande do Sul, Brazil. Isolates were obtained at 11 locations and evaluated for indoleacetic acid and siderophore production and inorganic phosphate solubilization. Ten isolates were also molecularly characterized and tested for antagonism against a phytopathogenic fungus and for plant growth promotion of rice seedlings. Of a total of 252 isolates, 59 produced indoleacetic acid, 20 produced siderophores and 107 solubilized phosphate. Some degree of antagonism against Verticillium sp. was observed in all tested isolates, reducing mycelial growth in culture broth. Isolate AGR-3 stood out for increasing root length of rice seedlings, while isolate ELD-18, besides increasing root length in comparison to the uninoculated control, also increased the germination speed index, shoot length, and seedling dry weight. These results confirm the potential of some strains of R. leguminosarum biovar trifolii as plant growth-promoting rhizobacteria.
Resumo:
Eighteen Pisolithus basidiomes were collected from Eucalyptus plantations in the state of Minas Gerais, Brazil. These basidiomes were characterized morphologically and molecularly. The basidiomes varied in shape, color and size. One of them was found underground, indicating a hypogeous fungus. The main morphological distinctive characteristic was spore ornamentation, which distinguished two groups. One group with short and erect spines was identified as Pisolithus microcarpus, and the other with long and curved spines as Pisolithus marmoratus, after analyzing the cladogram obtained by phylogenetic relationship based on internal transcribed spacer (ITS) regions of the nuclear ribosomal DNA of these isolates.