45 resultados para Mitotic checkpoint

em Scielo Saúde Pública - SP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using conventional staining with acetic orcein and C-banding techniques it was investigated constitutive heterochromatin chromosomal polymorphisms and the mitotic and the meiotic behavior of male and female chromosomes of Boophilus microplus (Canestrini, 1887). Some differences were detected in the population of southern Brazil as compared to the data of other authors for populations in other latitudes. The differences being mainly concerned with the distribution of constitutive centromeric heterochromatin and variation in the length of heterochromatic blocks in the pericentromeric regions of some chromosome pairs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chromosome studies were performed in V. champinii, V. cinerea, V. girdiana, V. labrusca, V. rotundifolia, V. rupestris and V. vinifera with the purpose of species characterization using chromosome morphometric data and NOR banding. A median ideogram was obtained for each species. The karyotype formula obtained varied from 7m + 12sm to 9m + 11sm. The species showed moderate chromosome asymmetry values according to TF% form, Stebbins, Romero Zarco and Paszko indices. V. champinii and V. girdiana were apart from the other species by CVcl and CVci graphic representation and also formed a group apart in the dendrogram based on Euclidian distances. The chromosome pair number 3 harbors the secondary constriction and a satellite segment in all species analyzed with Giemsa staining and it may be the same observed after NOR banding technique. It seems that the process of speciation in the North American Euvitis species studied involved some discrete changes in chromosome morphometry which have been reflected in the asymmetry index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some modifications were made to the methodology of Imai et al. (Jpn. J. Genet. 63: 159-185, 1988) for cytogenetic analysis of the leaf-cutting ants Atta sexdens piriventris and Acromyrmex heyeri (Hymenoptera, Formicidae), shortening preparation time and improving chromosomal preparations. The brain ganglia of prepupae were dissected in a 0.0025% hypotonic solution of colchicine, placed on a glass slide on a cold plate (4 ± 1oC) for 20 min. The material was fixed directly on the cold slide (with cold fixative I), macerated with a histological needle and fixed again with fixative I, followed by fixatives II and III, all of them cold. The slide was flame-dried right after the use of fixative III, and it was allowed to air-dry at room temperature for 2 h. The resulting metaphases presented less contracted chromosomes, with separated and well defined sister chromatids at a high frequency, when the material was processed in the manner described and stained with 3% Giemsa in phosphate buffer (pH 6.8) for 15 min.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methods previously described by Canovai et al. (Caryologia 47: 241-247, 1994) which produced C and ASG bands in mitotic chromosomes of Ceratitis capitata were applied to the chromosomes of several Anastrepha species. Metaphase plate yield was substantially increased by use of imaginal disks together with cerebral ganglia. The C-bands were quite prominent allowing the resolution of tiny blocks of heterochromatin. The ASG method produced G-like banded chromosomes, which permitted recognition of each individual chromosome. These simple techniques do not require special equipment and may be valuable for karyotype variability studies in fruit flies and other Diptera

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of two concentrations of caffeine (1500 mg/ml and 2500 mg/ml) on mitotic indices of Drosophila prosaltans was analyzed in larval brain cells. Although the differences detected between treated and control cells were not significant, the percentages obtained suggest a possible effect of caffeine in slowing the process of cell division

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymorphisms of the p53 gene, which participates in DNA repair, can affect the functioning of the p53 protein. The Arg and Pro variants in p53 codon 72 were shown to have different regulation properties of p53-dependent DNA repair target genes that can affect various levels of cytogenetic aberrations in chronic hepatitis B patients. The present study aimed to examine the frequency of chromosomal aberrations and the mitotic index in patients with chronic hepatitis B and their possible association with p53 gene exon 4 codon 72 Arg72Pro (Ex4+119 G>C; rs1042522) polymorphism. Fifty-eight patients with chronic hepatitis B and 30 healthy individuals were genotyped in terms of the p53 gene codon 72 Arg72Pro polymorphism by PCR-RFLP. A 72-h cell culture was performed on the same individuals and evaluated in terms of chromosomal aberrations and mitotic index. A high frequency of chromosomal aberrations and low mitotic index were detected in the patient group compared to the control group. A higher frequency of chromosomal aberrations was detected in both the patient and the control groups with a homozygous proline genotype (13 patients, 3 control subjects) compared to patients and controls with other genotypes [Arg/Pro (38 patients, 20 control subjects) and Arg/Arg (7 patients, 7 control subjects)]. We observed an increased frequency of cytogenetic aberrations in patients with chronic hepatitis B. In addition, a higher frequency of cytogenetic aberrations was observed in p53 variants having the homozygous proline genotype compared to variants having other genotypes both in patients and healthy individuals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present paper the behavior of the heterochromoso-mes in the course of the meiotic divisions of the spermatocytes in 15 species of Orthoptera belonging to 6 different families was studied. The species treated and their respective chromosome numbers were: Phaneropteridae: Anaulacomera sp. - 1 - 2n = 30 + X, n +15+ X and 15. Anaulacomera sp. - 2 - 2n - 30 + X, n = 15+ X and 15. Stilpnochlora marginella - 2n = 30 + X, n = 15= X and 15. Scudderia sp. - 2n = 30 + X, n = 15+ X and 15. Posldippus citrifolius - 2n = 24 + X, n = 12+X and 12. Acrididae: Osmilia violacea - 2n = 22+X, n = 11 + X and 11. Tropinotus discoideus - 2n = 22+ X, n = 11 + X and 11. Leptysma dorsalis - 2n = 22 + X, n = 11-J-X and 11. Orphulella punctata - 2n = 22-f X, n = 11 + X and 11. Conocephalidae: Conocephalus sp. - 2n = 32 + X, n = 16 + X and 16. Proscopiidae: Cephalocoema zilkari - 2n = 16 + X, n = 8+ X and 8. Tetanorhynchus mendesi - 2n = 16 + X, n = 8+X and 8. Gryliidae: Gryllus assimilis - 2n = 28 + X, n = 14+X and 14. Gryllodes sp. - 2n = 20 + X, n = 10- + and 10. Phalangopsitidae: Endecous cavernicola - 2n = 18 +X, n = 94-X and 9. It was pointed out by the present writer that in the Orthoptera similarly to what he observed in the Hemiptera the heterochromosome in the heterocinetic division shows in the same individual indifferently precession, synchronism or succession. This lack of specificity is therefore pointed here as constituting the rule and not the exception as formerly beleaved by the students of this problem, since it occurs in all the species referred to in the present paper and probably also m those hitherto investigated. The variability in the behavior of the heterochromosome which can have any position with regard to the autosomes even in the same follicle is attributed to the fact that being rather a stationary body it retains in anaphase the place it had in metaphase. When this place is in the equator of the cell the heterochromosome will be left behind as soon as anaphase begins (succession). When, on the contrary, laying out of this plane as generally happens (precession) it will sooner be reached (synchronism) or passed by the autosomes (succession). Due to the less kinetic activity of the heterochromosome it does not orient itself at metaphase remaining where it stands with the kinetochore looking indifferently to any direction. At the end of anaphase and sometimes earlier the heterochromosome begins to show mitotic activities revealed by the division of its body. Then, responding to the influence of the nearer pole it moves to it being enclosed with the autosomes in the nucleus formed there. The position of the heterochromosome in the cell is explained in the following manner: It is well known that the heterochromosome of the Orthoptera is always at the periphery of the nucleus, just beneath the nuclear membrane. This position may be any in regard of the axis of the dividing cell, so that if one of the poles of the spindle comes to coincide with it, the heterochromosome will appear at this pole in the metaphasic figures. If, on the other hand, the angle formed by the axis of the spindle with the ray reaching the heterochromosome increases the latter will appear in planes farther and farther apart from the nearer pole until it finishes by being in the equatorial plane. In this way it is not difficult to understand precession, synchronism or succession. In the species in which the heterochromosome is very large as it generally happens in the Phaneropteridae, the positions corresponding to precession are much more frequent. This is due to the fact that the probabilities for the heterochromosome taking an intermediary position between the equator and the poles at the time the spindle is set up are much greater than otherwise. Moreover, standing always outside the spindle area it searches for a place exactly where this area is larger, that is, in the vicinity of the poles. If it comes to enter the spindle area, what has very little probability, it would be, in virtue of its size, propelled toward the pole by the nearing anaphasic plate. The cases of succession are justly those in which the heterochromosome taking a position parallelly to the spindle axis it can adjust its large body also in the equator or in its proximity. In the species provided with small heterochromosome (Gryllidae, Conocephalidae, Acrididae) succession is found much more frequently because here as in the Hemiptera (PIZA 1945) the heterochromosome can equally take equatorial or subequatorial positions, and, furthermore, when in the spindle area it does offer no sereous obstacle to the passage of the autosomes. The position of the heterochromosome at the periphery of the nucleus at different stages may be as I suppose, at least in part a question of density. The less colourability and the surface irregularities characteristic of this element may well correspond to a less degree of condensation which may influence passive movements. In one of the species studied here (Anaulacomera sp.- 1) included in the Phaneropteridae it was observed that the plasmosome is left motionless in the spindle as the autosomes move toward the poles. It passes to one of the secondary spermatocytes being not included in its nucleus. In the second division it again passes to one of the cells being cast off when the spermatid is being transformed into spermatozoon. Thus it is regularly found among the tails of the spermatozoa in different stages of development. In the opinion of the present writer, at least in some cases, corpuscles described as Golgi body's remanents are nothing more than discarded plasmosomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Material: Studies were made mainly with Ascaris megalocephála Cloq. univalens and bivalens, and also with Tityus bahiensis Perty. 1) Somatic pairing of heterochromatic regions. The heterochromatic ends of the somatic chromosomes in Ascaris show a very strong tendency for unspecifical somatic pairing which may occur between parts of different chromosomes (Figs. 1, 2, 3, 7, 10, 11, 12, 13, 14, 16, 18,), between the two ends of the same chromosome either directly (Figs. 4, 5, 7, 8, 11, 12, 13, 15, 16, 17, 18) or inversely (Fig. 8, in the arrow) and also within a same chromosomal arm (Fig. 6). 2) During the early first cleavage division the chomosomes are an isodiametric cylinder (Figs. 6, 9, 11, 13, 14). But in later metaphase the ends become club shaped (Figs. 1, 2, 3, 4, 5, 7, 10) which is interpreted as the beginning of migration of chromatic substance from the central euchromatic region towards the heterochromatic regions. This migration becomes more and accentuated in anaphase (Figs. 19, 22, 23) and in the vegetative cells where euchromatic region looses more and more staing power, especially in the intersititial zones between the individual small spherical chromosomes into which the euchromatic region desintegrates. The emigrated chromatin material is finally eliminated with the heterochromatic chromosome ends (Fig. 23 and 24). 3) It seems a general rule that during mitotic anaphase all chromosomes with diffuse or multiple spindle fiber attachement (Ascaris, Tityus, Luzula, Steatococcus, Homoptera and Heteroptera in general) move to the poles in the form of an U with precedence of the chromosomal ends. In Ascaris, the heterocromatic regions are pulled passively towards the poles and only the euchromatic central portion may be U-shaped (Fig. 19, 22, 25). While in the other species this U-shape is perfect since the beginning of anaphase, giving the impression that movement towards the poles begins at both ends of a chromosome simultaneously, this is not the case in Ascaris. There the euchromatic region is at first U-shaped, passing then to form a straight or zig-zag line and becoming again U-shaped during late anaphase. This is explained by the fact that the ends of the euchromatic regions have to pull the weight of the passive heterochromatic portions. 4) While it is generally accepted that, during first meio-tic division untill second anaphase, all attachement regions remain either undivided or at least united closely, this is not the case in chromosomes with diffused or multiple attachment. Here one clearly sees in all cases so far studied four parallel chromatids at first metaphase. In Luzula and Tityus (for Tityus all figs. 26 to 31) this division is allready quite clear in paraphase (pro-metaphase) and it cannot be said wether in other species the division in sister chromatids is allready present, but not visible at this stage. During first anaphase the sister chromatids of Titbits remain more or less in contact, while in Luzula and especially in Ascaris they are quite separated. Thus one can count in late anaphase or telophase of Ascaris megalocephala bivalens, nearly allways, four separate chromosomes near each pole, or a total of eight chromatids per division figure (Figs. 35, 36, 37, 38, 39, 40, 41).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The morphology of the cyst cells in Apis mellifera Linné, 1758, Scaptotrigona postica Latreille, 1804, and Melipona bicolor bicolor Lepeletier, 1836 testis, as well as the average number of spermatic cells are reported. The data indicates a supporting and nourrishing role of the cyst cells to the developing cystocytes. The counts of immature spermatozoa in the cysts show an average of 202.8 ± 21.2 spermatozoa for A. mellifera, 117.4 ± 8.68 for S. postica and 88.8 ± 15.57 for M. bicolor, which predict the occurrence of 8 mitotic cycles in the cystocytes of A. mellifera and 7 in the meliponines, considering that only one spermatozoom originates of each final spermatogonium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surgical removal of large amounts of hepatic tissue in male albino rats results in a rapid and conspicuous raise in cellular nuclear volumes. Measurements were made exclusively in resting nuclei. This volume variation is transitory. Nuclear volumes return to the normal value withins 6 days of restoration. The higher value are abserved 48 hours after the hepatic removal, indicating probably that this effect is due to hydration of the nucei, as occurs in the cytoplasm. This hydration could be correlated to the mitotic activity of the renmant tissue since a peak of mitoses parallels the changes in the nuclear volumes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The action of colchicine upon the spermatogenesis of Triatoma infestans, (Hemipt. Heteroptera), has been studied and the different categories of giant spermatids that appear during the treatment have been compared with the nuclear volumes of the whole series of normal spermatogenetic stages. The following facts have been ascertained: 1) 4 hours after the treatment the gonial mitotic metaphases, and the 1st. and 2nd. metaphases of meiosis are stopped. The prophasic stages of meiosis and diakynesis appear to be normal. After 9 days of treatment, all the tetrads are broken in the meiotic metaphases and the cells appear with 44 and 22 chromosomes respectively, scattered in the cytoplasm. 2) At 9 days, practically all spermatogenetic stages have disappeared except for a few cysts of spermatogonia, and practically the whole testicle is full of cysts of spermatozoa and spermatid, with some large zones of necrosis with pycnotic nuclei. The spermatids appear to be of different sizes and the statistical analysis of the nuclear volumes gives a polymodal hystogram with 4 modes, whose volumes are in the ratio of 1:2:4:8. Ripe spermatozoa seem to have a certain volume variability, that has not been possible to analyse quantitatively. All these facts confirm what DOOLEY found in the colchicinized Orthoptera testicle. 3) The caryometric analysis conducted statistically on the normal stages of the spermatogenesis (resting spermatogonia, gonial prophases, leptotene, "confused stage", diakynesis, and spermatid) revealed the following facts: a) Considering the volume of the resting, spermatogonia as 1, their mitotic prophases have a volume of 2. Some rare prophases appear to have a volume of 4 and probably belong to tetraployd spermatogonia normally present in the testicle of Hemiptera. b) The first spermatocyte at the beginning of the auxocitary growth (leptotene) has a volume of 2, which is equal to that of them gonial prophase. It grows further during the "confused stage" and reduplicates, reaching thus the volume of 4. Diakynesis has a rather variable nuclear volume and it is higher than volume 4. This is probably of physico-chemical nature and not a growth increase. c) The spermatid at the beginning of the spermiogenetic process has a volume of 1 which is very constant and homogeneous. 4) These results can be summarized concluding that the meiotic process begins from a spermatogonium at the end of his mitotic interphasic growth (vol. 2) and instead of entering into the mitotic prophase transforms itself into the leptotene spermatocyte. During the diplotene ("confused stage") the volume of the nucleus doubles once more and reaches volume 4. In consequence of the two successive meiotic divisions the spermatid, although having an haploid number of chromosomes, has a nuclear volume of 1, just like the diploid spermatogonium. The interpretation of this strange result probably comes from the existence of the "tertiary split" in the chromosomes of the haploid set, that has been illustrated in the Hemiptera by HUGUES SCHRADER and in Orthoptera by MICKEY and co-workers. The tertiary split indicates that the chromosomes of the haploid set are constituted from almost two chromonemata, and this double constitution corresponds to the double cycle of reduplication that takes place during the spermatogenesis starting from the resting gonia. In Triatoma infestans the tertiary split appears in the chromosomes in the 1st. and 2nd. metaphases and in the diakynesis. In the blocked metaphases at the 9th. day of colchicinization some of the 44 elements scattered in the cytoplasm, show, when properly oriented, the split very clearly. Some new and strange facts revealed by SCHRADER and LEUCHTEMBERGER in Arvelius suggest the possibility of other interpretations of the rhythmic growth in special cases. There appears the necessity of more knowledge about the multiple or simple constitution of the chromosomes in somatic and spermatogonial mitosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Precocene II, added to the meal of fourth-instar larvae of Rhodnius prolixus (25 mug/ml of blood), induced an in crease in the duration of the molting cycle. This effect was related to the decrease of both the nuclear area of the prothoracic gland cells and the mitotic activity in epidermal cellS. juvenile hormone analogue applied topically (60 mug/insect) together with Precocene II treatment avoided atrophy of the prothoracic glands and induced a higher number of epidermal mitosis accelerating the time of subsequent ecdysis. A possible relationship between juvenile hormone and production of ecdysone is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When 4th instar nymphs of Panstrongylus megistus are fed with a saturant blood meal, there is an intense proliferation of the spermatogonia. At the end of the intermoult, the older spermatogonial cysts differentiate into 1st primary spermatocyte cysts. In the nymphs deprived of the blood meal this evolution is not observed, but a small growth of the testicular follicles occurs, due to a few mitotic divisions. This growth is observed at least, until 25 days after ecdysis. Since day 15, an autolytic process starts in the older spermatogonial cysts. The presence of exogenous juvenile hormone III (JH III) does not promote the development of the germ cells in the fasting insects. There is only a small growth of the testicular follicles and the autolytic process is also observed. In the precocious adults obtained by allatectomy or precocene II treatment, germ cells are observed in all development stages, except packed and elongated spermatozoa bundels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Because of the increase use of alkaloids in general medical practice in recent years, it is of interest to determine genotoxic, mutagenic and recombinogenic response to different groups of alkaloids in prokaryotic and eucaryotic organisms. Reserpine, boldine and chelerythrine did not show genotoxicity response in the SOS-Chromotest whereas skimmianine showed genotixicity in the presence of a metabolic activation mixture. Voacristine isolated fromthe leaves of Ervatamia coronaria shows in vivo cytostatic and mutagenic effects in Saccharomyces cerevisiae hapioids cells. The Rauwolfia alkaloid (reserpine) was not able to induce reverse mutation and recombinational mitotic events (crossing-over and gene conversion) in yeast diploid strain XS2316.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extensive chromosome size polymorphism in Plasmodium berghei in vivo mitotic multiplication. Size differences between homologous chromosomes mainly involve rearrangements in the subtelomeric regions while internal chromosomal regions are more conserved. Size differences are almost exclusively due to differences in the copy number of a 2.3 kb subtelomeric repeat unit. Not only deletion of 2.3 kb repeats occurs, but addition of new copies of this repeat sometimes results in the formation of enlarged chromosomes. Even chromosomes which originally lack 2.3 kb repeats, can acquire these during mitotic multiplication. In one karyotype mutant, 2.3 kb repeats were inserted within one of the original telomeres of chromosome 4, creating an internal stretch oftelomeric repeats. Chromosome translocation can contribute to chromosome size polymorphism as well We found a karyotype mutant in which chromosome 7 with a size of about 1.4 Mb is translocated to chromosome 13/14 with a size of about 3 Mb, resulting in a rearranged chromosome, which was shown to contain a junction between internal DNA sequences of chromosome 13/14 and subtelomeric 2.3 kb repeats of chromosome 7. In this mutant a new chromosome of 1.4 Mb is present which consists of part of chromosome 13/14.