4 resultados para Miscibility

em Scielo Saúde Pública - SP


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(hydroxybutyrate) and its copolymers are linear polyesters behaving as conventional thermoplastic materials. However, they are totally biodegradable and produced by a wide variety of bacteria from renewable sources. Some properties and high production cost are still preventing future applications. In an attempt to improve the properties and to reduce cost blending PHB with others polymeric materials is one of the most efficient method. In this paper, miscibility, compatibility, morphological and mechanical aspects of PHB blends will be reviewed. An extensive revision over twenty last years was realized about works of blends based on PHB and its copolymers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the effect of adding titanium dioxide nanoparticles (TiO2) to ethylene vinyl acetate (EVA) copolymer, containing 28% vinyl acetate groups, on the crystallinity and miscibility of the copolymer. Films of EVA/TiO2 containing 0.25%-1% TiO2, relative to the total weight of EVA, were prepared from their solution. The obtained films were characterized by X-ray diffraction, low-field nuclear magnetic resonance, and differential scanning calorimetry. The addition of TiO2 to the EVA copolymer was proved to cause changes in the crystallinity and mobility of the polymer chains of EVA, due to new intermolecular interactions and nanostructure organization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the structural, mechanical, diffractometric, and thermal parameters of chitosan-hydroxypropylmethylcellulose (HPMC) films plasticized with sorbitol were studied. Solutions of HPMC (2% w/v) in water and chitosan (2% w/v) in 2% acetic acid solution were prepared. The concentration of sorbitol used was 10% (w/w) to both polymers. This solutions were mixed at different proportions (100/0; 70/30; 50/50; 30/70, and 0/100) of chitosan and HPMC, respectively, and 20 mL was cast in Petri dishes for further analysis of dried films. The miscibility of polymers was assessed by X-ray diffraction, scanning electronic microscopy (SEM), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The results obtained indicate that the films are not fully miscible at a dry state despite the weak hydrogen bonding between the polymer functional groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract In this work, a novel on-line process for production of food-grade emulsions containing oily extracts, i.e. oil-in-water (O/W) emulsions, in only one step is presented. This process has been called ESFE, Emulsions from Supercritical Fluid Extraction. With this process, emulsions containing supercritical fluid extracts can be obtained directly from plant materials. The aim in the conception of this process is to propose a new rapid way to obtain emulsions from supercritical fluid extracts. Nowadays the conventional emulsion formulation method is a two-step procedure, i.e. first supercritical fluid extraction for obtaining an extract; secondly emulsion formulation using another device. Other variation of the process was tested and successfully validated originating a new acronymed process: EPFE (Emulsions from Pressurized Fluid Extractions). Both processes exploit the supercritical CO2-essential oils miscibility, in addition, EPFE process exploits the emulsification properties of saponin-rich pressurized aqueous plant extracts. The feasibility of this latter process was demonstrated using Pfaffia glomerata roots as source of saponin-rich extract, water as extracting solvent and clove essential oil, directly extracted using supercritical CO2, as a model dispersed phase. In addition, examples of pressurized fluid-based coupled processes applied for adding value to food bioactive compounds developed in the past five years are reviewed.