179 resultados para Minimal lethal concentration
em Scielo Saúde Pública - SP
Resumo:
Twelve extracts obtained from nine plants belonging to six different genera of Clusiaceae were analyzed against Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus and Enterococcus faecalis) bacteria using the microdilution broth assay. Tovomita aff. longifolia, T. brasiliensis, Clusia columnaris, Garcinia madruno, Haploclathra paniculata, and Caraipa grandifolia extracts showed significant results against the bacteria. The organic extract obtained from the leaves of T. aff. longifolia showed minimal inhibitory concentration (MIC) = 70 µg/ml and minimal bactericidal concentration (MBC) = 90 µg/ml against E. faecalis and the organic extract made with the stem of C. columnaris showed MIC = 180 µg/ml and MBC = 270 µg/ml against P. aeruginosa. None of the antibacterial extracts showed lethal activity against brine shrimp nauplii. On the other hand, both aqueous and organic extracts obtained from the aerial organs of Vismia guianensis that were cytotoxic to brine shrimp nauplii did not show a significant antibacterial activity in the assay.
Resumo:
Baccharis trimera (Less.) (Asteraceae), popularly know as "carqueja", is a species commonly used in folk medicine for the treatment or prevention of diseases. In this context, the purpose of this work was to study the antibacterial activity of crude hydroalcoholic extract from Baccharis trimera against Gram-positive bacterial strains (Staphylococcus aureus ATCC 29213, Staphylococcus saprophyticus ATCC 15305, Staphylococcus epidermidis ATCC 12228, Enterococcus faecalis ATCC 19433) and Gram-negative bacteria (Escherichia coli EHEC ATCC 43895, Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 27736, Salmonella typhi ATCC 19430) of clinical interest. Antibacterial susceptibility was evaluated by broth microdilution assay following the CLSI (formerly the NCCLS) guidelines. The extract from B. trimera showed antibacterial activity against Gram-positive bacteria and the most interesting result was obtained against S. epidermidis that presented Minimal Inhibitory Concentration of 250μg/mL. These results indicate that B. trimera have bacterisostatic potential against Gram-positive bacterial strains of medical interest and could serve as a base for further studies on the use of isolated compounds from this species as future antimicrobials.
Resumo:
Falciparum malaria represents a serious and an increasing world public health problem due to the acquired parasite's resistance to the most available drugs. In some endemic areas, quinidine, a diastereoisomer of the antimalarial quinine, has been employed for replacing the latter. In order to evaluate the use of quinidine as an alternative to the increasing loss of quinine effectiveness in Brazilian P. falciparum strains, as has been observed in the Amazon area, we have assayed quinidine, quinine and chloroquine. The in vitro microtechnique was employed. All isolates showed to be highly resistant to chloroquine. Resistance to quinine was not noted although high MIC (minimal inhibitory concentration) values have been observed. These data corroborate the decreasing sensitivity to quinine in strains from Brazil. Quinidine showed IC50 from 0.053 to 4.577 mumol/L of blood while IC50 from 0.053 to 8.132 mumol/L of blood was estimated for quinine. Moreover, clearance of the parasitemia was observed in concentrations lower than that used for quinidine in antiarrhythmic therapy, confirming our previous data. The results were similar to African isolate.
Resumo:
The antifungal activities of fluconazole, itraconazole, ketoconazole, terbinafine and griseofulvin were tested by broth microdilution technique, against 60 dermatophytes isolated from nail or skin specimens from Goiania city patients, Brazil. In this study, the microtiter plates were incubated at 28 ºC allowing a reading of the minimal inhibitory concentration (MIC) after four days of incubation for Trichophyton mentagrophytes and five days for T. rubrum and Microsporum canis. Most of the dermatophytes had uniform patterns of susceptibility to the antifungal agents tested. Low MIC values as 0.03 µg/mL were found for 33.3%, 31.6% and 15% of isolates for itraconazole, ketoconazole and terbinafine, respectively.
Resumo:
INTRODUCTION: Methicillin-Resistant Staphylococcus aureus (MRSA) presenting reduced susceptibility to vancomycin has been associated to therapeutic failure. Some methods used by clinical laboratories may not be sufficiently accurate to detect this phenotype, compromising results and the outcome of the patient. OBJECTIVES: To evaluate the performance of methods in the detection of vancomycin MIC values among clinical isolates of MRSA. MATERIAL AND METHODS: The Vancomycin Minimal Inhibitory Concentration was determined for 75 MRSA isolates from inpatients of Mãe de Deus Hospital, Porto Alegre, Brazil. The broth microdilution (BM) was used as the gold-standard technique, as well as the following methods: E-test® strips (BioMérieux), M.I.C.E® strips (Oxoid), PROBAC® commercial panel and the automated system MicroScan® (Siemens). Besides, the agar screening test was carried out with 3 µg/mL of vancomycin. RESULTS: All isolates presented MIC ≤ 2 µg/mL for BM. E-test® had higher concordance (40%) in terms of global agreement with the gold standard, and there was not statistical difference among E-test® and broth microdilution results. PROBAC® panels presented MICs, in general, lower than the gold-standard panels (58.66% major errors), while M.I.C.E.® MICs were higher (67.99% minor errors). CONCLUSIONS: For the population of MRSA in question, E-test® presented the best performance, although with a heterogeneous accuracy, depending on MIC values.
Resumo:
Candida albicans is an opportunistic human pathogen that is capable of causing superficial and systemic infections in immunocompromised patients. Extracts of Sapindus saponaria have been used as antimicrobial agents against various organisms. In the present study, we used a combination of two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) to identify the changes in protein abundance of C. albicans after exposure to the minimal inhibitory concentration (MIC) and sub-minimal inhibitory concentration (sub-MIC) of the butanolic extract (BUTE) of S. saponaria and also to fluconazole. A total of six different proteins with greater than 1.5 fold induction or repression relative to the untreated control cells were identified among the three treatments. In general, proteins/enzymes involved with the glycolysis (GPM1, ENO1, FBA1), amino acid metabolism (ILV5, PDC11) and protein synthesis (ASC1) pathways were detected. In conclusion, our findings reveal antifungal-induced changes in protein abundance of C. albicans. By using the previously identified components of the BUTE of S. saponaria(e.g., saponins and sesquiterpene oligoglycosides), it will be possible to compare the behavior of compounds with unknown mechanisms of action, and this knowledge will help to focus the subsequent biochemical work aimed at defining the effects of these compounds.
Resumo:
The present study had the aim of testing the hexane and methanol extracts of avocado seeds, in order to determine their toxicity towards Artemia salina, evaluate their larvicidal activity towards Aedes aegypti and investigate their in vitro antifungal potential against strains of Candida spp, Cryptococcus neoformans and Malassezia pachydermatis through the microdilution technique. In toxicity tests on Artemia salina, the hexane and methanol extracts from avocado seeds showed LC50 values of 2.37 and 24.13mg mL-1 respectively. Against Aedes aegypti larvae, the LC50 results obtained were 16.7mg mL-1 for hexane extract and 8.87mg mL-1 for methanol extract from avocado seeds. The extracts tested were also active against all the yeast strains tested in vitro, with differing results such that the minimum inhibitory concentration of the hexane extract ranged from 0.625 to 1.25mg L-¹, from 0.312 to 0.625mg mL-1 and from 0.031 to 0.625mg mL-1, for the strains of Candida spp, Cryptococcus neoformans and Malassezia pachydermatis, respectively. The minimal inhibitory concentration for the methanol extract ranged from 0.125 to 0.625mg mL-1, from 0.08 to 0.156mg mL-1 and from 0.312 to 0.625mg mL-1, for the strains of Candida spp., Cryptococcus neoformans and Malassezia pachydermatis, respectively.
Resumo:
INTRODUCTION: Carbapenem-resistant Pseudomonas aeruginosa (CRPA) has been isolated with increasing frequency in Brazilian hospitals. Since June 2003, its detection in a teaching hospital in the city of Florianópolis, Brazil, has increased. This study aimed to investigate the minimal inhibitory concentration (MIC), presence of Metallo-β-lactamase (MβL) and a possible clonal relationship among the isolates. METHODS: The study included 29 CRPA and seven isolates with reduced susceptibility. The MIC was determined by agar-dilution. Detection of MβL was performed by Double Disk Sinergism (DDS) and Combined Disk (CD). The MβL gene was verified by PCR and nucleotide sequence analysis. Epidemiological typing was performed by pulsed-field gel electrophoresis. RESULTS: Among the 29 carbapenem-resistant isolates, polymyxin B presented 100% susceptibility and piperacillin/tazobactam 96.7%. Seventeen (62%) strains were verified as clonal (A clone) and among these, six isolates indicated phenotypically positive tests for MβL and harbored the blaSPM-1 gene. The first CRPA isolates were unrelated to clone A, harbored blaIMP-16 and were phenotypically positive only by CD. CONCLUSIONS: The spread of a high-level of resistance clone suggests cross transmission as an important dissemination mechanism and has contributed to the increased rate of resistance to carbapenems. This study emphasizes the need for continuous surveillance and improved strategies.
Resumo:
INTRODUCTION: In the past two decades members of the genus Enterococcus have emerged as important nosocomial pathogens worldwide. This study prospectively analyzed the distribution of species and trends in antimicrobial resistance among clinical isolates of enterococci in a Brazilian tertiary hospital from 2006-2009. METHODS: Enterococcal species were identified by conventional biochemical tests. The antimicrobial susceptibility profile was performed by disk diffusion in accordance with the Clinical and Laboratory Standards Institute (CLSI). A screening test for vancomycin was also performed. Minimal inhibitory concentration (MIC) for vancomycin was determined using the broth dilution method. Molecular assays were used to confirm speciation and genotype of vancomycin-resistant enterococci (VRE). RESULTS: A total of 324 non-repetitive enterococcal isolates were recovered, of which 87% were E. faecalis and 10.8% E. faecium. The incidence of E. faecium per 1,000 admissions increased significantly (p < 0.001) from 0.3 in 2006 to 2.3 in 2009. The VRE rate also increased over time from 2.5% to 15.5% (p < 0.001). All VRE expressed high-level resistance to vancomycin (MIC >256µg/ mL) and harbored vanA genes. The majority (89.5%) of VRE belonged to E. faecium species, which were characteristically resistant to ampicillin and quinolones. Overall, ampicillin resistance rate increased significantly from 2.5% to 21.4% from 2006-2009. Resistance rates for gentamicin, chloramphenicol, tetracycline, and erythromycin significantly decreased over time, although they remained high. Quinolones resistance rates were high and did not change significantly over time. CONCLUSIONS: The data obtained show a significant increasing trend in the incidence of E. faecium resistant to ampicillin and vancomycin.
Resumo:
INTRODUCTION: Antimicrobial activity on biofilms depends on their molecular size, positive charges, permeability coefficient, and bactericidal activity. Vancomycin is the primary choice for methicillin-resistant Staphylococcus aureus (MRSA) infection treatment; rifampicin has interesting antibiofilm properties, but its effectivity remains poorly defined. METHODS: Rifampicin activity alone and in combination with vancomycin against biofilm-forming MRSA was investigated, using a twofold serial broth microtiter method, biofilm challenge, and bacterial count recovery. RESULTS: Minimal inhibitory concentration (MIC) and minimal bactericidal concentration for vancomycin and rifampicin ranged from 0.5 to 1mg/l and 0.008 to 4mg/l, and from 1 to 4mg/l and 0.06 to 32mg/l, respectively. Mature biofilms were submitted to rifampicin and vancomycin exposure, and minimum biofilm eradication concentration ranged from 64 to 32,000 folds and from 32 to 512 folds higher than those for planktonic cells, respectively. Vancomycin (15mg/l) in combination with rifampicin at 6 dilutions higher each isolate MIC did not reach in vitro biofilm eradication but showed biofilm inhibitory capacity (1.43 and 0.56log10 CFU/ml reduction for weak and strong biofilm producers, respectively; p<0.05). CONCLUSIONS: In our setting, rifampicin alone failed to effectively kill biofilm-forming MRSA, demonstrating stronger inability to eradicate mature biofilm compared with vancomycin.
Pimenta pseudocaryophyllus inhibits virulence factors and promotes metabolic changes in Candidayeast
Resumo:
IntroductionThis is the first study to examine the in vitrosusceptibility and the expression of virulence factors in Candida species in the presence of Pimenta pseudocaryophyllus (Gomes) L.R. Landrum (Myrtaceae), a Brazilian plant known as paucravo. Additionally, the mechanisms of action of the crude ethanol extract and the ethyl acetate and aqueous fractions of this plant were investigated.MethodsThe in vitro susceptibility of Candida was tested using the broth microdilution method, whereas an XTT reduction assay was used for biofilms. Adherence was determined by counting the number of yeast cells that adhered to 100 oral epithelial cells, and hyphal formation was verified in the hyphal induction medium M199. Flow cytometry with propidium iodide and FUN-1 was performed to assess the mechanism of action.ResultsThe results revealed that the crude ethanol extract and the ethyl acetate and aqueous fractions of P. pseudocaryophyllusinhibited the growth of Candida isolates at a minimal inhibitory concentration (MIC) ranging from 64 to 256µg/mL, whereas the 50% sessile minimal inhibitory concentration (SMIC50) ranged from 512 to >1,024µg/mL. Adherence and hyphal formation were significantly reduced in the presence of the crude ethanol extract and both fractions. Although cell membrane injury was detected, the predominant mechanism of action appeared to be the alteration of yeast metabolism, as demonstrated by flow cytometry.ConclusionsOur results indicated that antifungal activity reduced the expression of virulence factors in yeast via the alteration of yeast metabolism, suggesting that the crude extract of P. pseudocaryophyllus and its fractions may contain novel antifungal agents.
Resumo:
Bioassays under laboratory conditions aiming to determine the larvicidal activity of Bacillus sphaericus were carried out on Anopheles darlingi and Culex quinquefasciatus. In order to estimate the toxicity through median lethal concentration (LC50) and the relative potency of the strains to B. sphaericus standard strain 2362, probit analysis was performed utilizing the POLO-PC program. The findings of LC50 pointed out high effectiveness on strains IB15 (0.040 ppm), IB19 and S1116 (0.048 ppm), IB16 (0.052 ppm) and S265 (0.057 ppm). Strain IB15 presented nearly 50% more potency than strain 2362 in bioassays conducted on A. darlingi. It was observed that IB16 and S1116 strains were the most powerful against C. quinquefasciatus, showing to be about 300-400% stronger than 2362 strain. The results show that laboratory conditioned evaluation can be an important way to select promising bacteria with entomopathogenic action on biolarvicides production for use on mosquitoes breeding sites.
Resumo:
Poor water quality condition has been pointed out as one of the major causes for the high mortality of ornamental fishes exported from the state of Amazonas, Brazil. The purpose of the current study was to define water quality standards for cardinal tetra (Paracheirodon axelrodi), by establishing the lower and higher for lethal temperature (LT50), lethal concentration (LC50) for total ammonia and nitrite and LC50 for acid and alkaline pH. According to the findings, cardinal tetra is rather tolerant to high temperature (33.3 ºC), to a wide pH range (acid pH=2.9 and alkaline pH=8.8) and to high total ammonia concentration (23.7 mg/L). However, temperatures below 19.6 ºC and nitrite concentrations above 1.1 mg/L NO2- may compromise fish survival especially during long shipment abroad.
Resumo:
Penicillin tolerance among 67 strains of beta-hemolytic streptococci was examined by determining the ratio of the minimal bactericidal concentration to the minimal inhibitory concentration as 32 or greater. Tolerance was demonstrated in 15 group A strains and in 11,7, and 4 of groups B, C and G, respectively. Thereafter the effects of a subminimal inhibitory concentration (1/2MIC) of penicillin on the bacterial products of four tolerant and four nontolerant strains (two of each Lancefield group) were analyzed and compared. The antibiotic caused a marked increase in the expression of the group carbo-hydrates for strains of group B. Penicillin was found to reduce the cell-bound hemolysin activities of the four tolerant strains and to increase the activity of the other (free) form of nontolerant groups A, C and G hemolysins. Penicillin caused an increase in the extracellular hyaluronidase activities of one group A and groups B, C and G streptococci. With added antibiotic the production of deoxyribonuclease by tolerant groups A, C and G was greatly enhanced and that of the group B streptococcus was arrested.
Resumo:
An experimental model of murine chromoblastomycosis and in vitro tests with Fonsecaea pedrosoi were used to test the sensitivity of this fungus to three different antimycotics. The experimental model was standardized in BALB/c mice inoculated intraperitoneally with a 10(6) CFU/ml suspension of a F. pedrosoi isolate. Clinical infection was evident after 5 days of inoculation. Three groups of 27 mice each were used in the experiment. One group was treated with ketoconazole (KTZ), another with itraconazole (ITZ) and the other with saperconazole (SPZ). Antimycotic therapy was continued for 21 days. The control group consisted of 40 mice which were inoculated, but not treated. Infection was documented by macroscopic and microscopic examination of affected tissue in addition to culture of tissue macerates. Minimal inhibitory concentrations (MIC) and minimal fungicidal concentrations (MFC) for the F. pedrosoi strain used were done. The in vitro results showed that SPZ was the most active with MIC 0.01 mg/ml and MFC 0.1 mg/ml, followed by ITZ. SPZ was also the most effective in vivo since 63% of the treated animals (p=0.01) showed a curative effect after the observation period. We concluded that SPZ had the best in vitro and in vivo activity against F. pedrosoi.