55 resultados para Medium -chain fatty acids
em Scielo Saúde Pública - SP
Resumo:
The short chain fatty acids (SCFA) are the best nutrients for the colonocytes. Glucose is poorly used as a fuel but may be transformed into SCFA by colonic bacteria. The aim of this study was to investigate the effect of SCFA or glucose on experimental colitis. Colitis was induced in 30 Wistar rats by colonic instillation of 4% acetic acid. Five days later they were randomized to receive twice a day colonic lavage containing saline (controls, N = 10), 10% hypertonic glucose (N = 10) or SCFA (N = 10) until day 8 when they were killed. At autopsy, the colon was removed and weighed and the mucosa was evaluated macro- and microscopically and stripped out for DNA assay. Data are reported as mean ± SD or median [range] as appropriate. All animals lost weight but there was no difference between groups. Colon weight was significantly lower in the SCFA group (3.8 ± 0.5 g) than in the control (5.3 ± 2.1 g) and glucose (5.2 ± 1.3 g) groups (P<0.05). Macroscopically, the severity of inflammation was less in SCFA (grade 2 [1-5]) than in control (grade 9 [4-10]) and glucose-treated (grade 9 [2-10]) animals (P<0.01). Microscopically, ulceration of the mucosa was more severe in the glucose and control groups than in the SCFA group. The DNA content of the mucosa of SCFA-treated animals (8.2 [5.0-20.2] mg/g of tissue) was higher than in glucose-treated (5.1 [4.2-8.5] mg/g of tissue; P<0.01) and control (6.2 [4.5-8.9] mg/g of tissue; P<0.05) animals. We conclude that SCFA may enhance mucosal re-epithelialization in experimental colitis, whereas hypertonic glucose is of no benefit.
Resumo:
Cheese whey permeate was used as a substrate for the fermentation of Propionibacterium freudenreichi PS1 for the production of short chain fatty acids, components of the bio-aroma of Swiss cheese. The liquid bio-aroma was encapsulated by spray drying under different conditions of air inlet temperature and feed rate. A study was carried out on the stability of the bio-aroma during storage in laminated packages at 30 °C for 96 days using the product showing the greatest retention of acetic and propionic acids. The results showed that the best drying conditions were an air entrance temperature of 180 °C and a feed rate of 24 g/min resulting in particles with a smooth surface and few invaginations and micro-fissures. However, 72% of the acetic acid and 80% of the propionic acid were lost during storage showing that the wall material used was inadequate to guarantee product stability.
Resumo:
A radiometric assay system has been used to study oxidation patterns of (1-14C) fatty acids by drug-susceptible and drug-resistant organisms of the genus Mycobacterium. Two strains of M. tuberculosis susceptible to all drugs, H37Rv and Erdman, were used. Drug-resistant organisms included in this investigation were M. tuberculosis H37Rv resistant to 5 ug/ml isoniazid, M. bovis, M. avium, M. intracellular, M. kansasii and M. chelonei. The organisms were inoculated in sterile reaction vials containing liquid 7H9 medium, 10% ADC enrichment and 1.0 uCi of one of the (1-14C) fatty acids (butyric, hexánoic, octanoic, decanoic, lauric, myristic, palmitic, stearic, oleic, linoleic, linolenic). Vials were incubated at 37°C and the 14CO2 envolved was measured daily for 3 days with a Bactec R-301 instrument. Although each individual organism displayed a different pattern of fatty oxidation, these patterns were not distinctive enough for identification of the organism. No combination of fatty acids nor preferential oxidation of long chain or of short chain fatty acids were able to separate susceptible from resistant organisms. Further investigation with a larger number of drug susceptible mycobacteria including assimilation studies and oxidation of other substrates may be required to achieve a distinction between drug-susceptible and drug-resistant mycobacteria.
Resumo:
The objective of this work was to determine productive and fertility responses of Holstein-Friesian heifers and cows to supplementation with extruded linseed and soybean as sources of polyunsaturated fatty acids (PUFAs). Supplementation had a positive effect on profitability, with significant increases in milk yield in supplemented cows, but not in heifers. Treatments had no effect on milk fat content, but higher milk protein contents were observed with supplementation. A higher conception rate was found for supplemented heifers, but not for cows. Fat sources containing PUFAs are recommended for dairy cattle supplementation, since they improve fertility in heifers and milk yield in cows.
Resumo:
The purpose of this study is to analyze the interactions that occur in binary and ternary fat blends between medium and long chain triacylglycerols and their structured lipids obtained by chemical interesterification through the analysis of their physico-chemical properties. The synthesized structured triacylglycerols presented from 14.8 to 58.4% medium chain fatty acids, from 15.7 to 37.2% saturated fatty acids, from 19.2 to 47.5% monounsaturated fatty acids, and from 6.7 to 15.2% essential fatty acids. Chemical interesterification modified the behavior of binary and ternary mixtures and new types of triacylglycerol groups were formed.
Resumo:
Abstract This study evaluated the chemical and volatile composition of jujube wines fermented with Saccharomyces cerevisiae A1.25 with and without pulp contact and protease treatment during fermentation. Yeast cell population, total reducing sugar and methanol contents had significant differences between nonextracted and extracted wine. The nonextracted wines had significantly higher concentrations of ethyl 9-hexadecenoate, ethyl palmitate and ethyl oleate than the extracted wines. Pulp contact also could enhance phenylethyl alcohol, furfuryl alcohol, ethyl palmitat and ethyl oleate. Furthermore, protease treatment can accelerate the release of fusel oils. The first principal component separated the wine from the extracted juice without protease from other samples based on the higher concentrations of medium-chain fatty acids and medium-chain ethyl esters. Sensory evaluation showed pulp contact and protease could improve the intensity and complexity of wine aroma due to the increase of the assimilable nitrogen.
Resumo:
Lipids used in nutritional support of surgical or critically ill patients have been based on soybean oil, which is rich in the n-6 fatty acid linoleic acid (18:2n-6). Linoleic acid is the precursor of arachidonic acid (20:4n-6). In turn, arachidonic acid in cell membrane phospholipids is the substrate for the synthesis of a range of biologically active compounds (eicosanoids) including prostaglandins, thromboxanes, and leukotrienes. These compounds can act as mediators in their own right and can also act as regulators of other processes, such as platelet aggregation, blood clotting, smooth muscle contraction, leukocyte chemotaxis, inflammatory cytokine production, and immune function. There is a view that an excess of n-6 fatty acids should be avoided since this could contribute to a state where physiological processes become dysregulated. One alternative is the use of fish oil. The rationale of this latter approach is that fish oil contains long chain n-3 fatty acids, such as eicosapentaenoic acid. When fish oil is provided, eicosapentaenoic acid is incorporated into cell membrane phospholipids, partly at the expense of arachidonic acid. Thus, there is less arachidonic acid available for eicosanoid synthesis. Hence, fish oil decreases production of prostaglandins like PGE2 and of leukotrienes like LTB4. Thus, n-3 fatty acids can potentially reduce platelet aggregation, blood clotting, smooth muscle contraction, and leukocyte chemotaxis, and can modulate inflammatory cytokine production and immune function. These effects have been demonstrated in cell culture, animal feeding and healthy volunteer studies. Fish oil decreases the host metabolic response and improves survival to endotoxin in laboratory animals. Recently clinical studies performed in various patient groups have indicated benefit from this approach.
Resumo:
The carrot leaf dehydration conditions in air circulation oven were optimized through response surface methodology (RSM) for minimizing the degradation of polyunsaturated fatty acids, particularly alpha-linolenic (LNA, 18:3n-3). The optimized leaf drying time and temperature were 43 h and 70 ºC, respectively. The fatty acids (FA) were investigated using gas chromatography equipped with a flame ionization detector and fused silica capillary column; FA were identified with standards and based on equivalent-chain-length. LNA and other FA were quantified against C21:0 internal standard. After dehydration, the amount of LNA, quantified in mg/100 g dry matter of dehydrated carrot leaves, were 984 mg.
Resumo:
1. Fish oils are rich in the long-chain n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acids. Linseed oil and green plant tissues are rich in the precursor fatty acid, a-linolenic acid (18:3n-3). Most vegetable oils are rich in the n-6 PUFA linoleic acid (18:2n-6), the precursor of arachidonic acid (20:4n-6). 2. Arachidonic acid-derived eicosanoids such as prostaglandin E2 are pro-inflammatory and regulate the functions of cells of the immune system. Consumption of fish oils leads to replacement of arachidonic acid in cell membranes by eicosapentaenoic acid. This changes the amount and alters the balance of eicosanoids produced. 3. Consumption of fish oils diminishes lymphocyte proliferation, T-cell-mediated cytotoxicity, natural killer cell activity, macrophage-mediated cytotoxicity, monocyte and neutrophil chemotaxis, major histocompatibility class II expression and antigen presentation, production of pro-inflammatory cytokines (interleukins 1 and 6, tumour necrosis factor) and adhesion molecule expression. 4. Feeding laboratory animals fish oil reduces acute and chronic inflammatory responses, improves survival to endotoxin and in models of autoimmunity and prolongs the survival of grafted organs. 5. Feeding fish oil reduces cell-mediated immune responses. 6. Fish oil supplementation may be clinically useful in acute and chronic inflammatory conditions and following transplantation. 7. n-3 PUFAs may exert their effects by modulating signal transduction and/or gene expression within inflammatory and immune cells.
Resumo:
Due to the adverse effects of the cholesterol oxidation products for the human health, the search of the occurrence and the quantification of these compounds in foods are considered of great importance. In this paper the effect of grilling in hake and sardine on cholesterol oxides formation and fatty acids alterations was investigated. The main fatty acids determined in both fishes were docosahexaenoic (DHA), oleic, eicosapentaenoic (EPA) and palmitoleic. The total lipids, fatty acids and cholesterol contents were decreased significantly (p < 0.02) after thermal treatment, with simultaneous increase of the cholesterol oxides contents. The cholesterol oxides determined in both species in the present study were: 19-hydroxycholesterol, 24(S)-hydroxycholesterol, 22(S) hydroxycholesterol, 25-hydroxycholesterol, 25(R)-hydroxycholesterol and 7-ketocolesterol. Besides the presence of the cholesterol oxides in raw fishes, there were a greater number of products resulting from the oxidation of cholesterol side chain, a fact rarely observed in foods.
Resumo:
ABSTRACTINTRODUCTION:The larvicidal activity of oils, fatty acids, and methyl esters of Solanum lycocarpum fruit against Culex quinquefasciatus is unknown.METHODS:The larvicidal activity of samples of ripe and unripe fruit from S. lycocarpum was evaluated against third and fourth instar larvae of C. quinquefasciatus .RESULTS:The oils, fatty acids, and methyl esters of S. lycocarpum showed the greatest larvicidal effect (57.1-95.0%) at a concentration of 100mg/L (LC 50values between 0.70 and 27.54mg/L).CONCLUSIONS:Solanum lycocarpum fruit may be a good source of new natural products with larvicidal activity.
Resumo:
The objective of this work was to investigate the effect of dietary supplementation with essential fatty acids on the kinetics of macrophage accumulation and giant cell formation in Nile tilapia (Oreochromis niloticus). The supplementation sources were soybean oil (SO, source of omega 6, n‑6) and linseed oil (LO, source of omega 3, n‑3), in the following proportions: 100% SO; 75% SO + 25% LO; 50% SO + 50% LO; 25% SO + 75% LO; and 100% LO (four replicates per treatment). After a feeding period of three months, growth performance was evaluated, and glass coverslips were implanted into the subcutaneous connective tissue of fish, being removed for examination at 2, 4, 6, and 8 days after implantation. Growth performance did not differ between treatments. Fish fed 100% linseed oil diet had the greatest macrophage accumulation and the fastest Langhans cell formation on the sixth day. On the eighth day, Langhans cells were predominant on the coverslips implanted in the fish feed 75 and 100% linseed oil. n‑3 fatty acids may contribute to macrophage recruitment and giant cell formation in fish chronic inflammatory response to foreign body.
Resumo:
Different methods to determine total fat (TF) and fatty acids (FA), including trans fatty acids (TFA), in diverse foodstuffs were evaluated, incorporating gravimetric methods and gas chromatography with flame ionization detector (GC/FID), in accordance with a modified AOAC 996.06 method. Concentrations of TF and FA obtained through these different procedures diverged (p< 0.05) and TFA concentrations varied beyond 20 % of the reference values. The modified AOAC 996.06 method satisfied both accuracy and precision, was fast and employed small amounts of low toxicity solvents. Therefore, the results showed that this methodology is viable to be adopted in Brazil for nutritional labeling purposes.
Resumo:
In the current study, an alternative method has been proposed for simultaneous analysis of palmitic, stearic, oleic, linoleic, and linolenic acids by capillary zone electrophoresis (CZE) using indirect detection. The background electrolyte (BGE) used for the analysis of these fatty acids (FAs) consisted of 15.0 mmol L−1 NaH2PO4/Na2HPO4 at pH 6.86, 4.0 mmol L−1 SDBS, 8.3 mmol L−1 Brij 35, 45% v/v acetonitrile (can), and 2.1% n-octanol. The FAs quantification of FAs was performed using a response factor approach, which provided a high analytical throughput for the real sample. The CZE method, which was applied successfully for the analysis of pequi pulp, has advantages such as short analysis time, absence of lipid fraction extraction and derivatization steps, and no significant difference in the 95% confidence intervals for FA quantification results, compared to the gas chromatography official method (AOCS Ce 1h-05).
Resumo:
Objective: to evaluate liver regeneration in rats after partial hepatectomy of 60% with and without action diet supplemented with fatty acids through the study of the regenerated liver weight, laboratory parameters of liver function and histological study. Methods: thirty-six Wistar rats, males, adults were used, weighing between 195 and 330 g assigned to control and groups. The supplementation group received the diet by gavage and were killed after 24h, 72h and seven days. Evaluation of regeneration occurred through analysis of weight gain liver, serum aspartate aminotransferase, alanine aminotransferase, gamma-glutamyltranspeptidase, and mitosis of the liver stained with H&E. Results: the diet supplemented group showed no statistical difference (p>0.05) on the evolution of weights. Administration of fatty acids post-hepatectomy had significant reduction in gamma glutamyltransferase levels and may reflect liver regeneration. Referring to mitotic index, it did not differ between period of times among the groups. Conclusion: supplementation with fatty acids in rats undergoing 60% hepatic resection showed no significant interference related to liver regeneration.