11 resultados para McCann-Erickson

em Scielo Saúde Pública - SP


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este artigo apresenta alguns resultados de uma pesquisa de campo realizada em 2002 com o objetivo de compreender como os professores de História do ensino médio representam o saber histórico escolar que produzem cotidianamente na relação com seus alunos. A pesquisa foi formulada com base na teoria das representações de Henri Lefebvre e adotou a metodologia da observação participante interpretativa proposta por Frederick Erickson. Foram observadas aulas de quatro professores de História de uma escola da rede oficial de ensino do Estado de São Paulo durante todo o ano letivo. A análise dos dados sugere que as representações dos professores são marcadas pela oposição sistemática aos chamados "professores tradicionais" e aos "historiadores positivistas".

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJETIVO: Avaliar o comportamento da função pulmonar, força muscular respiratória e qualidade de vida no pré e pós-operatório de pacientes submetidos às toracotomias eletivas. MÉTODOS: Foram avaliados 19 pacientes submetidos à toracotomia eletiva para obtenção dos parâmetros: capacidade vital forçada (CVF), volume expiratório forçado no primeiro segundo (VEF1), pressão inspiratória máxima (PImax), pressão expiratória máxima (PEmax) e qualidade de vida mediante aplicação do questionário SF-36. Os exames foram realizados no pré-operatório, 2°, 10°, 15°, 30° e 60° dia de pós-operatório. Foram feitas análises de normalidade dos dados utilizando-se o teste de Shapiro-Wilk, análise descritiva das variáveis de estudo, bem como, análise de variância com comparações múltiplas utilizando-se os testes ANOVA e Friedman, com valor de p <0,05. RESULTADOS: Houve significativa redução nas variáveis espirométricas e nas pressões respiratórias máximas no 2° pós-operatório. CVF retornou aos valores pré-operatórios entre o 15° e o 30° pós-operatório, enquanto que VEF1 retornou entre o 10° e 15°. PImax e PEmax retornam aos valores pré-operatórios entre o 10° e 15° pós-operatório. Houve redução da qualidade de vida nos domínios capacidade funcional e aspectos físicos, que retornaram aos valores pré-operatórios em até dois meses após o procedimento cirúrgico. CONCLUSÃO: Foi verificada significativa redução na função pulmonar e na força muscular respiratória, que retornaram aos valores basais em até 30 dias após o procedimento cirúrgico. Houve queda na qualidade de vida, que persistiu por até 60 dias após a operação.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the participation of A1 or A2 receptors in the gonadotrope and their role in the regulation of LH and FSH secretion in adult rat hemipituitary preparations, using adenosine analogues. A dose-dependent inhibition of LH and FSH secretion was observed after the administration of graded doses of the R-isomer of phenylisopropyladenosine (R-PIA; 1 nM, 10 nM, 100 nM, 1 µM and 10 µM). The effect of R-PIA (10 nM) was blocked by the addition of 8-cyclopentyltheophylline (CPT), a selective A1 adenosine receptor antagonist, at the dose of 1 µM. The addition of an A2 receptor-specific agonist, 5-N-methylcarboxamidoadenosine (MECA), at the doses of 1 nM to 1 µM had no significant effect on LH or FSH secretion, suggesting the absence of this receptor subtype in the gonadotrope. However, a sharp inhibition of the basal secretion of these gonadotropins was observed after the administration of 10 µM MECA. This effect mimicked the inhibition induced by R-PIA, supporting the hypothesis of the presence of A1 receptors in the gonadotrope. R-PIA (1 nM to 1 µM) also inhibited the secretion of LH and FSH induced by phospholipase C (0.5 IU/ml) in a dose-dependent manner. These results suggest the presence of A1 receptors and the absence of A2 receptors in the gonadotrope. It is possible that the inhibition of LH and FSH secretion resulting from the activation of A1 receptors may have occurred independently of the increase in membrane phosphoinositide synthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide (NO) plays a crucial role in reproduction at every level in the organism. In the brain, it activates the release of luteinizing hormone-releasing hormone (LHRH). The axons of the LHRH neurons project to the mating centers in the brain stem and by afferent pathways evoke the lordosis reflex in female rats. In males, there is activation of NOergic terminals that release NO in the corpora cavernosa penis to induce erection by generation of cyclic guanosine monophosphate (cGMP). NO also activates the release of LHRH which reaches the pituitary and activates the release of gonadotropins by activating neural NO synthase (nNOS) in the pituitary gland. In the gonad, NO plays an important role in inducing ovulation and in causing luteolysis, whereas in the reproductive tract, it relaxes uterine muscle via cGMP and constricts it via prostaglandins (PG).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxytocin (OT), a nonapeptide, was the first hormone to have its biological activities established and chemical structure determined. It was believed that OT is released from hypothalamic nerve terminals of the posterior hypophysis into the circulation where it stimulates uterine contractions during parturition, and milk ejection during lactation. However, equivalent concentrations of OT were found in the male hypophysis, and similar stimuli of OT release were determined for both sexes, suggesting other physiological functions. Indeed, recent studies indicate that OT is involved in cognition, tolerance, adaptation and complex sexual and maternal behaviour, as well as in the regulation of cardiovascular functions. It has long been known that OT induces natriuresis and causes a fall in mean arterial pressure, both after acute and chronic treatment, but the mechanism was not clear. The discovery of the natriuretic family shed new light on this matter. Atrial natriuretic peptide (ANP), a potent natriuretic and vasorelaxant hormone, originally isolated from rat atria, has been found at other sites, including the brain. Blood volume expansion causes ANP release that is believed to be important in the induction of natriuresis and diuresis, which in turn act to reduce the increase in blood volume. Neurohypophysectomy totally abolishes the ANP response to volume expansion. This indicates that one of the major hypophyseal peptides is responsible for ANP release. The role of ANP in OT-induced natriuresis was evaluated, and we hypothesized that the cardio-renal effects of OT are mediated by the release of ANP from the heart. To support this hypothesis, we have demonstrated the presence and synthesis of OT receptors in all heart compartments and the vasculature. The functionality of these receptors has been established by the ability of OT to induce ANP release from perfused heart or atrial slices. Furthermore, we have shown that the heart and large vessels like the aorta and vena cava are sites of OT synthesis. Therefore, locally produced OT may have important regulatory functions within the heart and vascular beds. Such functions may include slowing down of the heart or the regulation of local vascular tone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The release of adrenocorticotropin (ACTH) from the corticotrophs is controlled principally by vasopressin and corticotropin-releasing hormone (CRH). Oxytocin may augment the release of ACTH under certain conditions, whereas atrial natriuretic peptide acts as a corticotropin release-inhibiting factor to inhibit ACTH release by direct action on the pituitary. Glucocorticoids act on their receptors within the hypothalamus and anterior pituitary gland to suppress the release of vasopressin and CRH and the release of ACTH in response to these neuropeptides. CRH neurons in the paraventricular nucleus also project to the cerebral cortex and subcortical regions and to the locus ceruleus (LC) in the brain stem. Cortical influences via the limbic system and possibly the LC augment CRH release during emotional stress, whereas peripheral input by pain and other sensory impulses to the LC causes stimulation of the noradrenergic neurons located there that project their axons to the CRH neurons stimulating them by alpha-adrenergic receptors. A muscarinic cholinergic receptor is interposed between the alpha-receptors and nitric oxidergic interneurons which release nitric oxide that activates CRH release by activation of cyclic guanosine monophosphate, cyclooxygenase, lipoxygenase and epoxygenase. Vasopressin release during stress may be similarly mediated. Vasopressin augments the release of CRH from the hypothalamus and also augments the action of CRH on the pituitary. CRH exerts a positive ultrashort loop feedback to stimulate its own release during stress, possibly by stimulating the LC noradrenergic neurons whose axons project to the paraventricular nucleus to augment the release of CRH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The central nervous system plays an important role in the control of renal sodium excretion. We present here a brief review of physiologic regulation of hydromineral balance and discuss recent results from our laboratory that focus on the participation of nitrergic, vasopressinergic, and oxytocinergic systems in the regulation of water and sodium excretion under different salt intake and hypertonic blood volume expansion (BVE) conditions. High sodium intake induced a significant increase in nitric oxide synthase (NOS) activity in the medial basal hypothalamus and neural lobe, while a low sodium diet decreased NOS activity in the neural lobe, suggesting that central NOS is involved in the control of sodium balance. An increase in plasma concentrations in vasopressin (AVP), oxytocin (OT), atrial natriuretic peptide (ANP), and nitrate after hypertonic BVE was also demonstrated. The central inhibition of NOS by L-NAME caused a decrease in plasma AVP and no change in plasma OT or ANP levels after BVE. These data indicate that the increase in AVP release after hypertonic BVE depends on nitric oxide production. In contrast, the pattern of OT secretion was similar to that of ANP secretion, supporting the view that OT is a neuromodulator of ANP secretion during hypertonic BVE. Thus, neurohypophyseal hormones and ANP are secreted under hypertonic BVE in order to correct the changes induced in blood volume and osmolality, and the secretion of AVP in this particular situation depends on NOS activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Angiotensin II and atrial natriuretic peptide (ANP) play important and opposite roles in the control of water and salt intake, with angiotensin II promoting the intake of both and ANP inhibiting the intake of both. Following blood volume expansion, baroreceptor input to the brainstem induces the release of ANP within the hypothalamus that releases oxytocin (OT) that acts on its receptors in the heart to cause the release of ANP. ANP activates guanylyl cyclase that converts guanosine triphosphate into cyclic guanosine monophosphate (cGMP). cGMP activates protein kinase G that reduces heart rate and force of contraction, decreasing cardiac output. ANP acts similarly to induce vasodilation. The intrinsic OT system in the heart and vascular system augments the effects of circulating OT to cause a rapid reduction in effective circulating blood volume. Furthermore, natriuresis is rapidly induced by the action of ANP on its tubular guanylyl cyclase receptors, resulting in the production of cGMP that closes Na+ channels. The OT released by volume expansion also acts on its tubular receptors to activate nitric oxide synthase. The nitric oxide released activates guanylyl cyclase leading to the production of cGMP that also closes Na+ channels, thereby augmenting the natriuretic effect of ANP. The natriuresis induced by cGMP finally causes blood volume to return to normal. At the same time, the ANP released acts centrally to decrease water and salt intake.