40 resultados para Maximal oxygen consumption
em Scielo Saúde Pública - SP
Resumo:
PURPOSE: To compare peak exercise oxygen consumption (VO2peak) of healthy individuals with asymptomatic individuals with probable heart disease. METHODS: Ninety-eight men were evaluated. They were divided into two groups: 1) 39 healthy individuals (group N) with an age range of 50±4.6 years; and 2) 59 asymptomatic individuals with signs of atherosclerotic and/or hypertensive heart disease (group C) with an age range of 51.9±10.4 years. In regard to age, height, body surface area, percentage of fat, lean body mass, and daily physical activity, both groups were statistically similar. Environmental conditions during the ergometric test were also controlled. RESULTS: Maximal aerobic power (watts), VO2peak, maximal heart rate, and maximal pulmonary ventilation were lower in group C (p<0.01) than in group N; weight, however, was lower in group N (p=0.031) than in group C. Differences in the respiratory gas exchange index, heart rate at rest, and the maximal double product of the two groups were not statistically significant. CONCLUSION: Signs of probable heart disease, even though asymptomatic, may reduce the functional capacity, perhaps due to the lower maximal cardiac output and/or muscle metabolic changes.
Resumo:
Background: The equations predicting maximal oxygen uptake (VO2max or peak) presently in use in cardiopulmonary exercise testing (CPET) softwares in Brazil have not been adequately validated. These equations are very important for the diagnostic capacity of this method. Objective: Build and validate a Brazilian Equation (BE) for prediction of VO2peak in comparison to the equation cited by Jones (JE) and the Wasserman algorithm (WA). Methods: Treadmill evaluation was performed on 3119 individuals with CPET (breath by breath). The construction group (CG) of the equation consisted of 2495 healthy participants. The other 624 individuals were allocated to the external validation group (EVG). At the BE (derived from a multivariate regression model), age, gender, body mass index (BMI) and physical activity level were considered. The same equation was also tested in the EVG. Dispersion graphs and Bland-Altman analyses were built. Results: In the CG, the mean age was 42.6 years, 51.5% were male, the average BMI was 27.2, and the physical activity distribution level was: 51.3% sedentary, 44.4% active and 4.3% athletes. An optimal correlation between the BE and the CPET measured VO2peak was observed (0.807). On the other hand, difference came up between the average VO2peak expected by the JE and WA and the CPET measured VO2peak, as well as the one gotten from the BE (p = 0.001). Conclusion: BE presents VO2peak values close to those directly measured by CPET, while Jones and Wasserman differ significantly from the real VO2peak.
Resumo:
Abstract Background: Prolonged aerobic exercise, such as running a marathon, produces supraphysiological stress that can affect the athlete's homeostasis. Some degree of transient myocardial dysfunction ("cardiac fatigue") can be observed for several days after the race. Objective: To verify if there are changes in the cardiopulmonary capacity, and cardiac inotropy and lusitropy in amateur marathoners after running a marathon. Methods: The sample comprised 6 male amateur runners. All of them underwent cardiopulmonary exercise testing (CPET) one week before the São Paulo Marathon, and 3 to 4 days after that race. They underwent echocardiography 24 hours prior to and immediately after the marathon. All subjects were instructed not to exercise, to maintain their regular diet, ingest the same usual amount of liquids, and rest at least 8 hours a day in the period preceding the CPET. Results: The athletes completed the marathon in 221.5 (207; 250) minutes. In the post-marathon CPET, there was a significant reduction in peak oxygen consumption and peak oxygen pulse compared to the results obtained before the race (50.75 and 46.35 mL.kg-1 .min-1; 19.4 and 18.1 mL.btm, respectively). The echocardiography showed a significant reduction in the s' wave (inotropic marker), but no significant change in the E/e' ratio (lusitropic marker). Conclusions: In amateur runners, the marathon seems to promote changes in the cardiopulmonary capacity identified within 4 days after the race, with a reduction in the cardiac contractility. Such changes suggest that some degree of "cardiac fatigue" can occur.
Resumo:
This work aimed at determining the dissolved oxygen consumption rate of Litopenaeus vannamei juveniles maintained in a microbial biofloc raceway system at high density with no aeration. Three 4 L bottles were filled for each treatment, sealed hermetically, and placed in an enclosed greenhouse raceway system. Four shrimp (13.2±1.42 g) were assigned to two sets of the bottles, which underwent the following treatments: light conditions with no shrimp; dark conditions with no shrimp; light conditions with shrimp; and dark conditions with shrimp. Dissolved oxygen content was measured every 10 min for 30 min. A quadratic behavior was observed in dissolved oxygen concentration over time. Significant differences for oxigen consumption were observed only at 10 and 20 min between shrimp maintained in the dark and those under light conditions. At 10 min, a higher value was observed in shrimp maintained under light, and at 20 min, in the dark. Significant differences between 10 and 20 min and between 10 and 30 min were observed when oxygen consumption was analyzed over time in the presence of light. Under dark conditions there were significant differences only between 20 and 30 min. Lethal oxygen concentration (0.65 mg L-1) would be reached in less than one hour either under light or dark conditions with no aeration.
Resumo:
The present study deals with a species of enteropneust, Glossobalanus crozieri, focusing on two aspects of its respiration: a) oxygen consumption and body mass, and b) the influence of environmental oxygen tension on the respiratory rate. Preliminarily, the body water content was shown to be 85% of the whole body weight. The regression coefficient of the oxygen consumption on the wet body mass (0.578) seems to agree with the view that in enteropneusts respiration is mainly cutaneous. The respiratory rate was significantly reduced at O2 tensions from 76 mmHg downwards, suggesting conformity rather than regulation
Resumo:
The study was performed to investigate possible alterations in oxygen consumption in an animal model with broad intestinal resection. Oxygen consumption and the thermal effect of a short meal were measured in rats subjected to short bowel syndrome. Four groups of rats were used. Group I was the control group, group II was sham operated, group III was submitted to 80% jejunum-ileum resection, and group IV was submitted to 80% jejunum-ileum resection with colon interposition. Ninety days after surgery, oxygen consumption was measured over a period of 6 h with the animals fasted overnight. The thermal effect of feeding was determined in another session of oxygen consumption measurement in animals fasted for 12 h. A 12-kcal meal was then introduced into the animal chamber and oxygen consumption was measured for a further 4 h. No differences in fasting oxygen consumption or in the thermal effect of the meal were detected among the groups studied. It is concluded that short bowel syndrome does not affect the overall energy expenditure of rats.
Resumo:
PURPOSE: Aerobic capacity and respiratory function may be compromised in obesity, but few studies have been done in highly obese bariatric candidates. In a prospective study, these variables were documented in the preoperative period, aiming to define possible physiologic limitations in a apparently healthy and asymptomatic population. METHOD: Forty-six consecutively enrolled adults (age 39.6 ± 8.4 years, 87.0% females, body mass index /BMI 49.6 ± 6.3 kg/m² ) were analyzed. Ventilatory variables were investigated by automated spirometry, aerobic capacity was estimated by a modified Bruce test in an ergometric treadmill, and body composition was determined by bioimpedance analysis. RESULTS: Total fat was greatly increased (46.4 ± 4.6% of body weight) and body water reduced (47.3 ± 4.6 % body weight), as expected for such obese group. Spirometric findings including forced vital capacity of 3.3 ± 0.8 L and forced expiratory volume-1 second of 2.6 ± 0.6 L were usually acceptable for age and gender, but mild restrictive pulmonary insufficiency was diagnosed in 20.9%. Aerobic capacity was more markedly diminished, as reflected by very modest maximal time (4.5 ± 1.1 min) and distance (322 ±142 m) along with proportionally elevated maximal oxygen consumption (23.4 ± 9.5 mL/kg/min) achieved by these subjects during test exercise. CONCLUSIONS: 1) Cardiopulmonary evaluation was feasible and well-tolerated in this severely obese population; 2) Mean spirometric variables were not diminished in this study, but part of the population displayed mild restrictive changes; 3) Exercise tolerance was very negatively influenced by obesity, resulting in reduced endurance and excessive metabolic cost for the treadmill run; 4) More attention to fitness and aerobic capacity is recommended for seriously obese bariatric candidates;
Resumo:
OBJECTIVE: To analyze associations between levels of physical activity, cardiorespiratory fitness, dietary content, and risk factors that cause a predisposition towards cardiovascular disease. METHODS: Sixty-two individuals aged between 20 and 45 years were evaluated. Levels of physical activity were established by estimates of energy demand corresponding to everyday activity; indices for cardiorespiratory fitness were obtained from estimates of maximal oxygen consumption; information about dietary content was obtained from dietary records kept on seven consecutive days. To indicate risk factors that cause a predisposition towards cardiovascular disease, use was made of body mass indexes, waist-hip circumference relationships, levels of arterial pressure and of plasma lipid-lipoprotein concentration. To establish associations between the variables studied, multiple regression analysis was used. RESULTS: Physical activity levels and cardiorespiratory fitness levels were inversely correlated with the amount and distribution of body fat and arterial pressure. Taken together, the two variables were responsible for between 16% and 19% of the variation in arterial pressure. Total and saturated fat ingestion was associated with higher serum lipid levels. Both dietary components were responsible for between 49% and 61% of the variation in LDL-cholesterol. CONCLUSION: High ingestion of food rich in total and saturated fat and decreased levels of physical activity and of cardiorespiratory fitness are associated with an increased risk of cardiovascular disease, which supports previous data.
Resumo:
Carbon monoxide diffusing capacity (DLCO) or transfer factor (TLCO) is a particularly useful test of the appropriateness of gas exchange across the lung alveolocapillary membrane. With the purpose of establishing predictive equations for DLCO using a non-smoking sample of the adult Brazilian population, we prospectively evaluated 100 subjects (50 males and 50 females aged 20 to 80 years), randomly selected from more than 8,000 individuals. Gender-specific linear prediction equations were developed by multiple regression analysis with single breath (SB) absolute and volume-corrected (VA) DLCO values as dependent variables. In the prediction equations, age (years) and height (cm) had opposite effects on DLCOSB (ml min-1 mmHg-1), independent of gender (-0.13 (age) + 0.32 (height) - 13.07 in males and -0.075 (age) + 0.18 (height) + 0.20 in females). On the other hand, height had a positive effect on DLCOSB but a negative one on DLCOSB/VA (P<0.01). We found that the predictive values from the most cited studies using predominantly Caucasian samples were significantly different from the actually measured values (P<0.05). Furthermore, oxygen uptake at maximal exercise (VO2max) correlated highly to DLCOSB (R = 0.71, P<0.001); this variable, however, did not maintain an independent role to explain the VO2max variability in the multiple regression analysis (P>0.05). Our results therefore provide an original frame of reference for either DLCOSB or DLCOSB/VA in Brazilian males and females aged 20 to 80 years, obtained from the standardized single-breath technique.
Resumo:
The objective of the present study was to determine the impact of acute short-term exposure to air pollution on the cardiorespiratory performance of military fireman living and working in the city of Guarujá, São Paulo, Brazil. Twenty-five healthy non-smoking firemen aged 24 to 45 years had about 1 h of exposure to low and high levels of air pollution. The tests consisted of two phases: phase A, in Bertioga, a town with low levels of air pollution, and phase B, in Cubatão, a polluted town, with a 7-day interval between phases. The volunteers remained in the cities (Bertioga/Cubatão) only for the time required to perform the tests. Cumulative load 10 ± 2 min-long exertion tests were performed on a treadmill, consisting of a 2-min stage at a load of 7 km/h, followed by increasing exertion of 1 km h-1 min-1 until the maximum individual limit. There were statistically significant differences (P < 0.05) in anaerobic threshold (AT) between Cubatão (35.04 ± 4.91 mL kg-1 min-1) and Bertioga (36.98 ± 5.62 mL kg-1 min-1; P = 0.01), in the heart rate at AT (AT HR; Cubatão 152.08 ± 14.86 bpm, Bertioga 157.44 ± 13.64 bpm; P = 0.001), and in percent maximal oxygen consumption at AT (AT%VO2max; Cubatão 64.56 ± 6.55%, Bertioga 67.40 ± 5.35%; P = 0.03). However, there were no differences in VO2max, maximal heart rate or velocity at AT (ATvel) observed in firemen between towns. The acute exposure to pollutants in Cubatão, SP, caused a significant reduction in the performance at submaximal levels of physical exertion.
Resumo:
Individuals with systemic arterial hypertension have a higher risk of heat-related complications. Thus, the aim of this study was to examine the thermoregulatory responses of hypertensive subjects during recovery from moderate-intensity exercise performed in the heat. A total of eight essential hypertensive (H) and eight normotensive (N) male subjects (age=46.5±1.3 and 45.6±1.4 years, body mass index=25.8±0.8 and 25.6±0.6 kg/m2, mean arterial pressure=98.0±2.8 and 86.0±2.3 mmHg, respectively) rested for 30 min, performed 1 h of treadmill exercise at 50% of maximal oxygen consumption, and rested for 1 h after exercise in an environmental chamber at 38°C and 60% relative humidity. Skin and core temperatures were measured to calculate heat exchange parameters. Mean arterial pressure was higher in the hypertensive than in the normotensive subjects throughout the experiment (P<0.05, unpaired t-test). The hypertensive subjects stored less heat (H=-24.23±3.99 W·m−2vs N=-13.63±2.24 W·m−2, P=0.03, unpaired t-test), experienced greater variations in body temperature (H=-0.62±0.05°C vsN=-0.35±0.12°C, P=0.03, unpaired t-test), and had more evaporated sweat (H=-106.1±4.59 W·m−2vs N=-91.15±3.24 W·m−2, P=0.01, unpaired t-test) than the normotensive subjects during the period of recovery from exercise. In conclusion, essential hypertensive subjects showed greater sweat evaporation and increased heat dissipation and body cooling relative to normotensive subjects during recovery from moderate-intensity exercise performed in hot conditions.
Resumo:
The purpose of this study was to analyze the relationship between the anaerobic components of the maximal accumulated oxygen deficit (MAOD) and of the 30-second Wingate anaerobic test (30-WAnT). Nine male physical education students performed: a) a maximal incremental exercise test; b) a supramaximal constant workload test to determine the anaerobic components of the MAOD; and c) a 30-WAnT to measure the peak power (PP) and mean power (MP). The fast component of the excess post-exercise oxygen consumption and blood lactate accumulation were measured after the supramaximal constant workload test in order to determine the contributions made by alactic (ALMET) and lactic (LAMET) metabolism. Significant correlations were found between PP and ALMET (r=0.71; P=0.033) and between MP and LAMET(r=0.72; P=0.030). The study results suggested that the anaerobic components of the MAOD and of the 30-WAnT are similarly applicable in the assessment of ALMET and LAMET during high-intensity exercise.
Resumo:
During cardiopulmonary exercise testing (CPET), stroke volume can be indirectly assessed by O2 pulse profile. However, for a valid interpretation, the stability of this variable over time should be known. The objective was to analyze the stability of the O2 pulse curve relative to body mass in elite athletes. VO2, heart rate (HR), and relative O2 pulse were compared at every 10% of the running time in two maximal CPETs, from 2005 to 2010, of 49 soccer players. Maximal values of VO2 (63.4 ± 0.9 vs 63.5 ± 0.9 mL O2•kg-1•min-1), HR (190 ± 1 vs188 ± 1 bpm) and relative O2 pulse (32.9 ± 0.6 vs 32.6 ± 0.6 mL O2•beat-1•kg-1) were similar for the two CPETs (P > 0.05), while the final treadmill velocity increased from 18.5 ± 0.9 to 18.9 ± 1.0 km/h (P < 0.01). Relative O2 pulse increased linearly and similarly in both evaluations (r² = 0.64 and 0.63) up to 90% of the running time. Between 90 and 100% of the running time, the values were less stable, with up to 50% of the players showing a tendency to a plateau in the relative O2 pulse. In young healthy men in good to excellent aerobic condition, the morphology of the relative O2 pulse curve is consistent up to close to the peak effort for a CPET repeated within a 1-year period. No increase in relative O2pulse at peak effort could represent a physiologic stroke volume limitation in these athletes.
Resumo:
OBJETIVE: The evaluation, by exercise stress testing, of the cardiorespiratory effects of pyridostigmine (PYR), a reversible acetylcholinesterase inhibitor. METHODS: A double-blind, randomized, cross-over, placebo-controlled comparison of hemodynamic and ventilation variables of 10 healthy subjects who underwent three exercise stress tests (the first for adaptation and determination of tolerance to exercise, the other two after administration of placebo or 45mg of PYR). RESULTS: Heart rate at rest was: 68±3 vs 68±3bpm before and after placebo, respectively (P=0.38); 70±2 vs 59±2bpm, before and after pyridostigmine, respectively (P<0.01). During exercise, relative to placebo: a significantly lower heart rate after PYR at, respectively, 20% (P=0.02), 40% (P=0.03), 80% (P=0.05) and 100% (P=0.02) of peak effort was observed. No significant differences were observed in arterial blood pressure, oxygen consumption at submaximal and maximal effort, exercise duration, respiratory ratio, CO2 production, ventilation threshold, minute ventilation, and oxygen pulse. CONCLUSION: Pyridostigmine, at a dose of 45mg, decreases heart rate at rest and during exercise, with minimal side effects and without interfering with exercise tolerance and ventilation variables.
Resumo:
OBJECTIVE: The 6-minute walk test is an way of assessing exercise capacity and predicting survival in heart failure. The 6-minute walk test was suggested to be similar to that of daily activities. We investigated the effect of motivation during the 6-minute walk test in heart failure. METHODS: We studied 12 males, age 45±12 years, ejection fraction 23±7%, and functional class III. Patients underwent the following tests: maximal cardiopulmonary exercise test on the treadmill (max), cardiopulmonary 6-minute walk test with the walking rhythm maintained between relatively easy and slightly tiring (levels 11 and 13 on the Borg scale) (6EB), and cardiopulmonary 6-minute walk test using the usual recommendations (6RU). The 6EB and 6RU tests were performed on a treadmill with zero inclination and control of the velocity by the patient. RESULTS: The values obtained in the max, 6EB, and 6RU tests were, respectively, as follows: O2 consumption (ml.kg-1.min-1) 15.4±1.8, 9.8±1.9 (60±10%), and 13.3±2.2 (90±10%); heart rate (bpm) 142±12, 110±13 (77±9%), and 126±11 (89±7%); distance walked (m) 733±147, 332±66, and 470±48; and respiratory exchange ratio (R) 1.13±0.06, 0.9±0.06, and 1.06±0.12. Significant differences were observed in the values of the variables cited between the max and 6EB tests, the max and 6RU tests, and the 6EB and 6RU tests (p<0.05). CONCLUSION: Patients, who undergo the cardiopulmonary 6-minute walk test and are motivated to walk as much as they possibly can, usually walk almost to their maximum capacity, which may not correspond to that of their daily activities. The use of the Borg scale during the cardiopulmonary 6-minute walk test seems to better correspond to the metabolic demand of the usual activities in this group of patients.