40 resultados para Massachusetts Agricultural Repository and Journal.
em Scielo Saúde Pública - SP
Resumo:
A review is presented of the interrelationships between arthropod vectors, the diseases they transmit and agricultural development. Particular attention is given to the effects of deforestation, livestock development and irrigation on the abundance of vectors and changing patterns of diseases such as malaria, trypanosomiases, leishmaniasis, Chagas' and some arboviral infections. The question as whether keeping livestock diverts biting away from people and reduces diseases such as malaria - that is zooprophylaxis, or whether the presence of cattle actually increases biting populations is discussed.
Resumo:
The use of fertilizers and solid amendments in agriculture generates special interest for their effect on crop productivity, as well as for their environmental impact. The efficient use of these products demands knowing their physical and mechanical properties, the storing conditions effect and the operational characteristics of the metering systems used in the fertilizing equipment. In this context, the present study was developed with the purpose of evaluating the operational characteristics of different fertilizing metering systems and to determine the adequate metering system-product operational parameters, using powder lime, powder gypsum, granular 10-30-10 (N-P-K), and granular urea. Operational differences were established among four types of commercial fertilizer metering systems, including wire auger, star-shaped feed wheel, feed screw and ridged traction wheel. The study found that the unloading rate depends directly on the fertilizer metering system's rotating speed and is affected by particle size, repose angle, bulk density and moisture content of the applied product. The wire auger and star-shaped feed wheel metering systems were adequate for the distribution of powder products and the feed screw for granulated fertilizers. Furthermore, theoretical and experimental characteristic equations were established, defining curves for calibration and handling of the products plus the rotating speed range in which a better distributing behavior was achieved.
Resumo:
ABSTRACT This study aims at presenting the process of machine design and agricultural implements by means of a reference model, formulated with the purpose of explaining the development activities of new products, serving as a guideline to coach human resources and to assist in formalizing the process in small and medium-sized businesses (SMB), i.e. up to 500 employees. The methodology used included the process modeling, carried out from case studies in the SMB, and the study of reference models in literature. The modeling formalism used was based on the IDEF0 standard, which identifies the dimensions required for the model detailing: input information; activities; tasks; knowledge domains; mechanisms; controls and information produced. These dimensions were organized in spreadsheets and graphs. As a result, a reference model with 27 activities and 71 tasks was obtained, distributed over four phases of the design process. The evaluation of the model was carried out by the companies participating in the case studies and by experts, who concluded that the model explains the actions needed to develop new products in SMB.
Resumo:
As a rule, soils of the subtropical and tropical regions, in which rainfall is not limiting, are acidic, and low in phosphorus, and, to a less extent, in other macro and micronutrients as well, such a sulfur, boron and zinc. The establishment of a permanent agricultural prac. tice therefore, demands relatively high usage of liming and phosphatic fertilization, to begin with. Several approaches, not mutually exclusive, could be used in order to increase the efficiency of utilization of soil and fertilizer phosphorus so that, goal of diminishing costs of production is reached. The use of liming materials bringing up pH to 6.0-6.5 causes the conversion of iron and aluminum phosphates to more available calcium phosphates; on the other hand, by raising calcium saturation in the exchange complex, it improves the development and operation if the root system which allows c or a higher utilization of all soil nutrients, including phosphorus, and helps of stand water deficits which may occur. The role of mycorrhizal fungi should be considered as a way of increasing soil and fertilizer P utilization, as well as the limitations thereof. Screening of and breeding for varieties with higher efficiency of uptake and utilization of soil and fertilizer phosphorus leads to a reduction in cost of inputs and to higher benefit/cost ratios. Corrective fertilization using ground rock phosphate helps to saturate the fixation power of the soil thereby reducing, as a consequence, the need for phosphorus in the maintenance fertilization. Maintenance fertilization, in which soluble phos-phatic sources are used, could be improved by several means whose performance has been proved: limimg, granula tion, placement, use of magnesium salts. Last, cost of phosphate fertilization could be further reduced, without impairing yields, through impairing yields, through changes in technology designed to obtain products better adapted to local conditions and to the availability or raw materials and energy sources.
Resumo:
In evaluation of soil quality for agricultural use, soil structure is one of the most important properties, which is influenced not only by climate, biological activity, and management practices but also by mechanical and physico-chemical forces acting in the soil. The purpose of this study was to evaluate the influence of conventional agricultural management on the structure and microstructure of a Latossolo Vermelho distroférrico típico (Rhodic Hapludox) in an experimental area planted to maize. Soil morphology was described using the crop profile method by identifying the distinct structural volumes called Morphologically Homogeneous Units (MHUs). For comparison, we also described a profile in an adjacent area without agricultural use and under natural regrowth referred to as Memory. We took undisturbed samples from the main MHUs so as to form thin sections and blocks of soil for micromorphological and micromorphometrical analyses. Results from the application of the crop profile method showed the occurrence of the following structural types: loose (L), fragmented (F) and continuous (C) in both profiles analyzed. In the Memory soil profile, the fragmented structures were classified as Fptμ∆+tf and Fmt∆μ, whose micromorphology shows an enaulic-porphyric (porous) relative distribution with a great deal of biological activity as indicated by the presence of vughs and channels. Lower down, from 0.20 to 0.35 m, there was a continuous soil volume (sub-type C∆μ), with a subangular block microstructure and an enaulic-porphyric relative distribution, though in this case more compact and with aggregate coalescence and less biological activity. The micromorphometrical study of the soil of the Memory Plot showed the predominance of complex pores in NAM (15.03 %), Fmt∆μ (11.72 %), and Fptμ∆+tf (7.73 %), and rounded pores in C∆μ (8.21 %). In the soil under conventional agricultural management, we observed fragmented structures similar to the Memory Plot from 0.02 to 0.20 m, followed by a volume with a compact continuous structure (C∆μ), without visible porosity and with few roots. In the MHUs under conventional management, reduction in the packing pores (40 %) was observed, mainly in the continuous units (C). The microstructure had well-defined blocks, with the occurrence of planar pores and less evidence of biological activity. In conclusion, the morphological and micromorphological analyses of the soil profiles studied offered complementary information regarding soil structural quality, especially concerning the changes in pore types as result of mechanical stress undergone by the soil.
Resumo:
Parameters such as tolerance, scale and agility utilized in data sampling for using in Precision Agriculture required an expressive number of researches and development of techniques and instruments for automation. It is highlighted the employment of methodologies in remote sensing used in coupled to a Geographic Information System (GIS), adapted or developed for agricultural use. Aiming this, the application of Agricultural Mobile Robots is a strong tendency, mainly in the European Union, the USA and Japan. In Brazil, researches are necessary for the development of robotics platforms, serving as a basis for semi-autonomous and autonomous navigation systems. The aim of this work is to describe the project of an experimental platform for data acquisition in field for the study of the spatial variability and development of agricultural robotics technologies to operate in agricultural environments. The proposal is based on a systematization of scientific work to choose the design parameters utilized for the construction of the model. The kinematic study of the mechanical structure was made by the virtual prototyping process, based on modeling and simulating of the tension applied in frame, using the.
Resumo:
This text focuses on the major drivers of Brazilian agricultural cooperation in Africa as conceived and pursued from 2004 to 2014, with emphasis on the impacts of political and economic international changes that took place in that period, and particularly the impacts of the 2008 economic crisis, in framing Brazil's foreign policy and development assistance initiatives. It addresses current international forces and developments at the systemic level, but also analyses recent economic domestic developments, in particular those directly related to Brazilian agriculture and those related to the policy framework of its evolving internationalization. Special attention is paid to the dual dimensions of Brazilian agricultural policy and to its projection in agricultural cooperation as pursed in Africa.
Resumo:
The use of cover crops is important for the agricultural crop and soil management in order to improve the system and, consequently, to increase yield. Therefore, the present study analyzed the effect of crop residues of black oat (Avena strigosa Schreb.) (BO) and a cocktail (CO) of BO, forage turnip (Raphanus sativus L.) (FT) and common vetch (Vicia sativa L.) (V) on the emergence speed index (ESI), seedling emergence speed (SES) plant height and soybean yield in different intervals between cover crop desiccation with glyphosate 480 (3 L ha-1) and BRS 232 cultivar sowing. Plots of 5 x 2.5 m with 1 m of border received four treatments with BO cover crops and four with CO as well as a control for each cover crop, at random, with five replications. The plots were desiccated in intervals of 1, 10, 20 and 30 days before soybean seeding. The harvest was manual while yield was adjusted to 13% of moisture content. The experimental design was completely randomized with splitplots and means compared by the Scott and Knott test at 5% of significance. The results showed that CO of cover crops can be recommended for soybean to obtain a more vigorous seedling emergence, from 10 days after cover crop desiccation.
Resumo:
Studies to select one or more species of coverage plants adapted to Amazonian soil and climate conditions of the Amazon are a promising strategy for the improvement of environmental quality, establishing no-till agricultural systems, and thereby reducing the impacts of monoculture farming. The aim of this study was to assess the persistence time, half-life time, macronutrient content and accumulation, and C:N ratio of straw coverage in a Ultisol in northeastern Pará. Experimental design was randomized blocks with five treatments and five replicates. Plants were harvested after 105 days, growth and biomass production was quantified. After 84 days, soil coverage was 97, 85, 52, 50, and 15% for signalgrass (Brachiaria brizantha) (syn. Urochloa), dense crowngrass (Panicum purpurascens), jack bean (Canavalia ensiformes), pearl millet (Pennisetum americanum) and sunn hemp (Crotalaria juncea,), respectively. Signalgrass yielded the greatest dry matter production (9,696 kg ha-1). It also had high C:N ratio (38.4), long half-life (86.5 days) and a high persistence in the field. Jack bean also showed high dry matter production (8,950 kg ha-1), but it had low C:N ratio (17.4) and lower half-life time (39 days) than the grasses. These attributes indicate that signalgrass and jack bean have a high potential for use as cover plants in no-till agricultural systems in the State of Pará.
Resumo:
ABSTRACT Amphibians are the most threatened vertebrate group according to the IUCN. Land-use and land cover change (LULCC) and climate change (CC) are two of the main factors related to declining amphibian populations. Given the vulnerability of threatened and rare species, the study of their response to these impacts is a conservation priority. The aim of this work was to analyze the combined impact of LULCC and CC on the regionally endemic species Melanophryniscus sanmartini Klappenbach, 1968. This species is currently categorized as near threatened by the IUCN, and previous studies suggest negative effects of projected changes in climate. Using maximum entropy methods we modeled the effects of CC on the current and mid-century distribution of M. sanmartini under two IPCC scenarios - A2 (severe) and B2 (moderate). The effects of LULCC were studied by superimposing the potential distribution with current land use, while future distribution models were evaluated under the scenario of maximum expansion of soybean and afforestation in Uruguay. The results suggest that M. sanmartini is distributed in eastern Uruguay and the south of Brazil, mainly related to hilly and grasslands systems. Currently more than 10% of this species' distribution is superimposed by agricultural crops and exotic forest plantations. Contrasting with a recent modelling study our models suggest an expansion of the distribution of M. sanmartini by mid-century under both climate scenarios. However, despite the rise in climatically suitable areas for the species in the future, LULCC projections indicate that the proportion of modified habitats will occupy up to 25% of the distribution of M. sanmartini. Future change in climate conditions could represent an opportunity for M. sanmartini, but management measures are needed to mitigate the effects of habitat modification in order to ensure its survival and allow the eventual expansion of its distribution.
Resumo:
We tested sera from 286 agricultural workers and 322 rodents in the department of Córdoba, northeastern Colombia, for antibodies against two hantaviruses. The sera were analysed by indirect ELISA using the lysate of Vero E6 cells infected with Maciel virus (MACV) or the N protein of Araraquara virus (ARAV) as antigens for the detection of antibodies against hantaviruses. Twenty-four human sera were IgG positive using one or both antigens. We detected anti-MACV IgG antibodies in 10 sera (3.5%) and anti-ARAV antibodies in 21 sera (7.34%). Of the 10 samples that were positive for MACV, seven (70%) were cross-reactive with ARAV; seven of the 21 ARAV-positive samples were cross-reactive with MACV. Using an ARAV IgM ELISA, two of the 24 human sera (8.4%) were positive. We captured 322 rodents, including 210 Cricetidae (181 Zygodontomys brevicauda, 28 Oligoryzomys fulvescens and 1 Oecomys trinitatis), six Heteromys anomalus (Heteromyidae), one Proechimys sp. (Echimyidae) and 105 Muridae (34 Rattus rattus and 71 Mus musculus). All rodent sera were negative for both antigens. The 8.4% detection rate of hantavirus antibodies in humans is much higher than previously found in serosurveys in North America, suggesting that rural agricultural workers in northeastern Colombia are frequently exposed to hantaviruses. Our results also indicate that tests conducted with South American hantavirus antigens could have predictive value and could represent a useful alternative for the diagnosis of hantavirus infection in Colombia.
Resumo:
Maize root growth is negatively affected by compacted layers in the surface (e.g. agricultural traffic) and subsoil layers (e.g. claypans). Both kinds of soil mechanical impedances often coexist in maize fields, but the combined effects on root growth have seldom been studied. Soil physical properties and maize root abundance were determined in three different soils of the Rolling Pampa of Argentina, in conventionally-tilled (CT) and zero-tilled (ZT) fields cultivated with maize. In the soil with a light Bt horizon (loamy Typic Argiudoll, Chivilcoy site), induced plough pans were detected in CT plots at a depth of 0-0.12 m through significant increases in bulk density (1.15 to 1.27 Mg m-3) and cone (tip angle of 60 º) penetrometer resistance (7.18 to 9.37 MPa in summer from ZT to CT, respectively). This caused a reduction in maize root abundance of 40-80 % in CT compared to ZT plots below the induced pans. Two of the studied soils had hard-structured Bt horizons (clay pans), but in only one of them (silty clay loam Abruptic Argiudoll, Villa Lía site) the expected penetrometer resistance increases (up to 9 MPa) were observed with depth. In the other clay pan soil (silty clay loam Vertic Argiudoll, Pérez Millán site), penetrometer resistance did not increase with depth but reached 14.5 MPa at 0.075 and 0.2 m depth in CT and ZT plots, respectively. However, maize root abundance was stratified in the first 0.2 m at the Villa Lía and Pérez Millán sites. There, the hard Bt horizons did not represent an absolute but a relative mechanical impedance to maize roots, by the observed root clumping through desiccation cracks.
Resumo:
The structural modeling of spatial dependence, using a geostatistical approach, is an indispensable tool to determine parameters that define this structure, applied on interpolation of values at unsampled points by kriging techniques. However, the estimation of parameters can be greatly affected by the presence of atypical observations in sampled data. The purpose of this study was to use diagnostic techniques in Gaussian spatial linear models in geostatistics to evaluate the sensitivity of maximum likelihood and restrict maximum likelihood estimators to small perturbations in these data. For this purpose, studies with simulated and experimental data were conducted. Results with simulated data showed that the diagnostic techniques were efficient to identify the perturbation in data. The results with real data indicated that atypical values among the sampled data may have a strong influence on thematic maps, thus changing the spatial dependence structure. The application of diagnostic techniques should be part of any geostatistical analysis, to ensure a better quality of the information from thematic maps.
Resumo:
The monitoring of heavy metal concentrations in areas under intensive agriculture is essential for the agricultural sustainability and food safety. This paper evaluates the total contents of heavy metals in soils and mango trees in orchards of different ages (6, 7, 8, 9, 10, 11, 14, 16, 17, 19, and 26 years) in Petrolina, Pernambuco, Brazil. Soil samples were taken from the layers 0-20 cm and 20-40 cm, and mango leaves were collected in the growth stage. Areas of native vegetation (Caatinga) adjacent to the cultivated areas were used for comparison. The total concentrations of heavy metals (Cu, Cr, Fe, Zn, Mn, Ni, and Pb) were determined in soils and leaves. In general, mango cultivation led to Cu and Zn accumulation in the soil surface and to a reduction in the contents of Ni, Pb, Mn, and Fe in surface and subsurface. Since contamination by Cu, Zn, and Cr was detected, these areas must be monitored to prevent negative environmental impacts. For instance, the presence of Cr in mango tree leaves indicates the need to investigate the source of the element in these orchards. The management strategies of the different companies led to deficiency or excess of some metals in the evaluated areas. However, the Fe and Mn levels were adequate for the mineral nutrition of mango in all areas.
Resumo:
Veredas are humid tropical ecosystems, generally associated to hydromorphic soils and a shallow water table. The soils of these ecosystems are affected by the use of the areas around these veredas. The objective of this study was to determine soil organic matter (SOM) fractions in veredas adjacent to preserved (native savanna) and disturbed environments (agricultural areas and pastures) in the Cerrado biome. Soil samples were collected from the 0-10 and 10-20 cm layers along reference lines drawn along the relief following the upper, middle and lower positions of one of the slopes, in the direction of the draining line of the vereda. The soil analysis determined: total soil OC, total nitrogen and C:N ratio; C and N contents and C:N ratio in particulate and mineral-associated fractions (of SOM); fulvic acids, humic acids and humin fractions and ratio between humic and fulvic acids. The agricultural use around the veredas induced changes in the SOM fractions, more pronounced in the lower part of the slope. In the soil surface of this part, the OC levels in the humic substances and the particulate fraction of SOM, as well as total soil OC were reduced in the vereda next to crop fields.