4 resultados para Machine Learning Robotics Artificial Intelligence Bayesian Networks

em Scielo Saúde Pública - SP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we discuss interesting developments of expert systems for machine diagnosis and condition-based maintenance. We review some elements of condition-based maintenance and its applications, expert systems for machine diagnosis, and an example of machine diagnosis. In the last section we note some problems to be resolved so that expert systems for machine diagnosis may gain wider acceptance in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to develop, validate, and compare 190 artificial intelligence-based models for predicting the body mass of chicks from 2 to 21 days of age subjected to different duration and intensities of thermal challenge. The experiment was conducted inside four climate-controlled wind tunnels using 210 chicks. A database containing 840 datasets (from 2 to 21-day-old chicks) - with the variables dry-bulb air temperature, duration of thermal stress (days), chick age (days), and the daily body mass of chicks - was used for network training, validation, and tests of models based on artificial neural networks (ANNs) and neuro-fuzzy networks (NFNs). The ANNs were most accurate in predicting the body mass of chicks from 2 to 21 days of age after they were subjected to the input variables, and they showed an R² of 0.9993 and a standard error of 4.62 g. The ANNs enable the simulation of different scenarios, which can assist in managerial decision-making, and they can be embedded in the heating control systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the major interests in soil analysis is the evaluation of its chemical, physical and biological parameters, which are indicators of soil quality (the most important is the organic matter). Besides there is a great interest in the study of humic substances and on the assessment of pollutants, such as pesticides and heavy metals, in soils. Chemometrics is a powerful tool to deal with these problems and can help soil researchers to extract much more information from their data. In spite of this, the presence of these kinds of strategies in the literature has obtained projection only recently. The utilization of chemometric methods in soil analysis is evaluated in this article. The applications will be divided in four parts (with emphasis in the first two): (i) descriptive and exploratory methods based on Principal Component Analysis (PCA); (ii) multivariate calibration methods (MLR, PCR and PLS); (iii) methods such as Evolving Factor Analysis and SIMPLISMA; and (iv) artificial intelligence methods, such as Artificial Neural Networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although several chemical elements were not known by end of the 18th century, Mendeleyev came up with an astonishing achievement: the periodic table of elements. He was not only able to predict the existence of (then) new elements but also to provide accurate estimates of their chemical and physical properties. This is certainly a relevant example of the human intelligence. Here, we intend to shed some light on the following question: Can an artificial intelligence system yield a classification of the elements that resembles, in some sense, the periodic table? To achieve our goal, we have fed a self-organized map (SOM) with information available at Mendeleyev's time. Our results show that similar elements tend to form individual clusters. Thus, SOM generates clusters of halogens, alkaline metals and transition metals that show a similarity with the periodic table of elements.