44 resultados para Lipid Transfer Protein
em Scielo Saúde Pública - SP
Resumo:
HIV+ patients often develop alterations of the plasma lipids that may implicate in development of premature coronary artery disease. High-density lipoprotein (HDL) has an important role in preventing atherogenesis and the aim of this study was to investigate aspects of HDL function in HIV+ patients. HIV+ patients (n = 48) and healthy control subjects (n = 45) of both sexes with similar age were studied. Twenty-five were not being treated with antiretroviral agents, 13 were under reverse transcriptase inhibitor nucleosidic and non-nucleosidic (NRTI+NNRTI) and 10 were under NRTI + protease inhibitors (NRTI+PI) treatment. Paraoxonase 1 (PON1) activity and the transfer of free and esterified cholesterol, tryglicerides and phospholipids from a lipidic nanoemulsion to HDL were analyzed. In comparison with healthy controls, HIV+ patients presented low PON-1 activity and diminished transfer of free cholesterol and tryglicerides. In contrast, phospholipid transfer was increased in those patients, whereas the transfer of cholesteryl esters was unchanged. NRTI+NNRTI increases the transfer of cholesteryl esters and triglycerides but in NRTI+PI there was no difference in respect to non-treated HIV+ patients. HDL from HIV+ patients has smaller antioxidant properties, as shown by lower PON-1 activity, and the transfer of lipids to this lipoprotein fraction is also altered, suggesting that HDL function is defective in those patients.
Resumo:
Electron paramagnetic resonance (EPR) spectroscopy of spin labels was used to monitor membrane dynamic changes in erythrocytes subjected to oxidative stress with hydrogen peroxide (H2O2). The lipid spin label, 5-doxyl stearic acid, responded to dramatic reductions in membrane fluidity, which was correlated with increases in the protein content of the membrane. Membrane rigidity, associated with the binding of hemoglobin (Hb) to the erythrocyte membrane, was also indicated by a spin-labeled maleimide, 5-MSL, covalently bound to the sulfhydryl groups of membrane proteins. At 2% hematocrit, these alterations in membrane occurred at very low concentrations of H2O2 (50 µM) after only 5 min of incubation at 37°C in azide phosphate buffer, pH 7.4. Lipid peroxidation, suggested by oxidative hemolysis and malondialdehyde formation, started at 300 µM H2O2 (for incubation of 3 h), which is a concentration about six times higher than those detected with the probes. Ascorbic acid and α-tocopherol protected the membrane against lipoperoxidation, but did not prevent the binding of proteins to the erythrocyte membrane. Moreover, the antioxidant (+)-catechin, which also failed to prevent the cross-linking of cytoskeletal proteins with Hb, was very effective in protecting erythrocyte ghosts from lipid peroxidation induced by the Fenton reaction. This study also showed that EPR spectroscopy can be useful to assess the molecular dynamics of red blood cell membranes in both the lipid and protein domains and examine oxidation processes in a system that is so vulnerable to oxidation.
Resumo:
Different concentrations of basil essential oil (Ocimum basilicum L.) (0.19; 0.38; 0.75; 1.87; 3.75 and 6.00 mg.g-1) were evaluated in relation to their antioxidant activity using the DPPH● radical methodology. From the IC50 obtained data, the concentrations of 0.19; 0.38; 0.75; 1.87; 3.75; 6.00 and 12.00 mg.mL-1 were applied directly to the product and these were sensorially evaluated by the test of control difference. The concentrations related to the highest acceptability (0.19; 0.38 and 0.75 mg.g-1) were tested for antioxidant activity in the internal part of Italian type salami - during the processing and after 30 days of storage, in terms of lipid and protein oxidation. The oxidation of lipids was determined using the method of TBARS. The method of carbonyl compounds was employed for proteins oxidation. Five different formulations of salami were elaborated: blank (without the use of antioxidant); control (using sodium eritorbate as antioxidant); and adding 0.19; 0.38 and 0.75 mg.g-1 of basil essential oil. The product was kept between 25 ºC and 18 ºC and UR between 95% and 70%, for 28 days. Analyses were carried out on the processing day and after 2, 7, 14, 21 and 28 days, and also following 30 days of storage. The basil essential oil in vitro presented an antioxidant activity of IC50 12 mg.mL-1. In the internal part of the Italian type salami the commercial antioxidant (control) and the formulation containing 0.75 mg.g-1 of basil essential oil presented antioxidant activity in relation to the lipids, but not to the proteins - during processing and storage.
Resumo:
Lipid transport in arthropods is achieved by highly specialized lipoproteins, which resemble those described in vertebrate blood. Here we describe purification and characterization of the lipid-apolipoprotein complex, lipophorin (Lp), from adults and larvae of the cowpea weevil Callosobruchus maculatus. We also describe the Lp-mediated lipid transfer to developing oocytes. Lps were isolated from homogenates of C. maculatus larvae and adults by potassio bromide gradient and characterized with respect to physicochemical properties and lipid content. The weevil Lp (465 kDa) and larval Lp (585 kDa), with hydrated densities of 1.22 and 1.14 g/mL, contained 34 and 56% lipids and 9 and 7% carbohydrates, respectively. In both Lps, mannose was the predominant monosaccharide detected by paper chromatography. SDS-PAGE revealed two apolipoproteins in each Lp with molecular masses of 225 kDa (apolipoprotein-I) and 79 kDa (apolipoprotein-II). The lipids were extracted and analyzed by thin-layer chromatography. The major phospholipids found were phosphatidylserine, phosphatidylcholine and phosphatidylethanolamine in adult Lp, and phosphatidylcholine, phosphatidylethanolamine and sphingomyelin in larval Lp. Hydrocarbons, fatty acids and triacylglycerol were the major neutral lipids found in both Lps. Lps labeled in the protein moiety with radioactive iodine (125I-iodine) or in the lipid moiety with fluorescent lipids revealed direct evidence of endocytic uptake of Lps in live oocytes of C. maculatus.
Resumo:
We determined whether over-expression of one of the three genes involved in reverse cholesterol transport, apolipoprotein (apo) AI, lecithin-cholesterol acyl transferase (LCAT) and cholesteryl ester transfer protein (CETP), or of their combinations influenced the development of diet-induced atherosclerosis. Eight genotypic groups of mice were studied (AI, LCAT, CETP, LCAT/AI, CETP/AI, LCAT/CETP, LCAT/AI/CETP, and non-transgenic) after four months on an atherogenic diet. The extent of atherosclerosis was assessed by morphometric analysis of lipid-stained areas in the aortic roots. The relative influence (R²) of genotype, sex, total cholesterol, and its main sub-fraction levels on atherosclerotic lesion size was determined by multiple linear regression analysis. Whereas apo AI (R² = 0.22, P < 0.001) and CETP (R² = 0.13, P < 0.01) expression reduced lesion size, the LCAT (R² = 0.16, P < 0.005) and LCAT/AI (R² = 0.13, P < 0.003) genotypes had the opposite effect. Logistic regression analysis revealed that the risk of developing atherosclerotic lesions greater than the 50th percentile was 4.3-fold lower for the apo AI transgenic mice than for non-transgenic mice, and was 3.0-fold lower for male than for female mice. These results show that apo AI overexpression decreased the risk of developing large atherosclerotic lesions but was not sufficient to reduce the atherogenic effect of LCAT when both transgenes were co-expressed. On the other hand, CETP expression was sufficient to eliminate the deleterious effect of LCAT and LCAT/AI overexpression. Therefore, increasing each step of the reverse cholesterol transport per se does not necessarily imply protection against atherosclerosis while CETP expression can change specific athero genic scenarios.
Resumo:
Cotyledon mesophyll cell morphology and lipid and protein synthesis of T. grandiflorum, T. subincanum and T. bicolor were analyzed and compared with T. cacao. These species possess foliar cotyledons folded around the hypocotyl radicle axis, typical of Sterculiaceae. Fruit size, morphology and weight are very distinct amongst the four species and so are the respective seeds. The main axis of the T. grandiflorum and T. bicolor seeds measured about 30 mm, while T. subincanum and T. cacao seeds measured 17 mm and 26 mm respectively. The seed weights of T. grandiflorum, T. bicolor, T. subincanum and T. cacao were 11.6 g, 9.4 g, 2.1 g and 3.0 g, respectively. The cotyledon mesophylls of the four species contained mainly polysaccharides and lipid-protein reserve cells. Theobroma cacao, T. grandiflorum and T. subincanum were composed of greater than 50% lipids. For the four species, lipid globules gradually accumulated adjacent to the cell wall, and these globules measured from 1 to 3 µm. TEM showed low-density proteins inside the central vacuole of the young mesophyll cells of T. cacao. The protein reserves of the mature cells were densely scattered amongst the lipid bodies, and a few starch granules occurred together with the cotyledon mesophyll of the four species. Polyphenolic cells were found throughout the mesophyll cells or aligned with the respective vascular bundles. Immature cells demonstrated the capacity to synthesize all these reserves, but gradually the pre-determined cells produced mainly lipid-protein reserves. Besides the unique characteristics of the T. cacao products, the lipid-protein synthesis capacities of T. grandiflorum, T. subincanum and T. bicolor suggest various possibilities for new industrialized food, pharmaceutical and cosmetic products.
Resumo:
This article reports on the design and characteristics of substrate mimetics in protease-catalyzed reactions. Firstly, the basis of protease-catalyzed peptide synthesis and the general advantages of substrate mimetics over common acyl donor components are described. The binding behavior of these artificial substrates and the mechanism of catalysis are further discussed on the basis of hydrolysis, acyl transfer, protein-ligand docking, and molecular dynamics studies on the trypsin model. The general validity of the substrate mimetic concept is illustrated by the expansion of this strategy to trypsin-like, glutamic acid-specific, and hydrophobic amino acid-specific proteases. Finally, opportunities for the combination of the substrate mimetic strategy with the chemical solid-phase peptide synthesis and the use of substrate mimetics for non-peptide organic amide synthesis are presented.
Resumo:
(-)-∆9-Tetrahydrocannabinol (∆9-THC), a psychoactive component of marijuana, has been reported to induce oxidative damage in vivo and in vitro. In this study, we administered ∆9-THC to healthy C57BL/6J mice aged 15 weeks in order to determine its effect on hepatic redox state. Mice were divided into 3 groups: ∆9-THC (N = 10), treated with 10 mg/kg body weight ∆9-THC daily; VCtrl (N = 10), treated with vehicle [1:1:18, cremophor EL® (polyoxyl 35 castor oil)/ethanol/saline]; Ctrl (N = 10), treated with saline. Animals were injected ip twice a day with 5 mg/kg body weight for 10 days. Lipid peroxidation, protein carbonylation and DNA oxidation were used as biomarkers of oxidative stress. The endogenous antioxidant defenses analyzed were glutathione (GSH) levels as well as enzyme activities of superoxide dismutase, catalase, glutathione S-transferase, glutathione reductase, and glutathione peroxidase (GPx) in liver homogenates. The levels of mRNA of the cannabinoid receptors CB1 and CB2 were also monitored. Treatment with ∆9-THC did not produce significant changes in oxidative stress markers or in mRNA levels of CB1 and CB2 receptors in the liver of mice, but attenuated the increase in the selenium-dependent GPx activity (Δ9-THC: 8%; VCtrl: 23% increase) and the GSH/oxidized GSH ratio (Δ9-THC: 61%; VCtrl: 96% increase), caused by treatment with the vehicle. Δ9-THC administration did not show any harmful effects on lipid peroxidation, protein carboxylation or DNA oxidation in the healthy liver of mice but attenuated unexpected effects produced by the vehicle containing ethanol/cremophor EL®.
Resumo:
We determined the influence of fasting (FAST) and feeding (FED) on cholesteryl ester (CE) flow between high-density lipoproteins (HDL) and plasma apoB-lipoprotein and triacylglycerol (TG)-rich emulsions (EM) prepared with TG-fatty acids (FAs). TG-FAs of varying chain lengths and degrees of unsaturation were tested in the presence of a plasma fraction at d > 1.21 g/mL as the source of CE transfer protein. The transfer of CE from HDL to FED was greater than to FAST TG-rich acceptor lipoproteins, 18% and 14%, respectively. However, percent CE transfer from HDL to apoB-containing lipoproteins was similar for FED and FAST HDL. The CE transfer from HDL to EM depended on the EM TG-FA chain length. Furthermore, the chain length of the monounsaturated TG-containing EM showed a significant positive correlation of the CE transfer from HDL to EM (r = 0.81, P < 0.0001) and a negative correlation from EM to HDL (r = -041, P = 0.0088). Regarding the degree of EM TG-FAs unsaturation, among EMs containing C18, the CE transfer was lower from HDL to C18:2 compared to C18:1 and C18:3, 17.7%, 20.7%, and 20%, respectively. However, the CE transfer from EMs to HDL was higher to C18:2 than to C18:1 and C18:3, 83.7%, 51.2%, and 46.3%, respectively. Thus, the EM FA composition was found to be the rate-limiting factor regulating the transfer of CE from HDL. Consequently, the net transfer of CE between HDL and TG-rich particles depends on the specific arrangement of the TG acyl chains in the lipoprotein particle core.
Resumo:
The reduction of hepatic microsomal transfer protein (MTP) activity results in fatty liver, worsening hepatic steatosis and fibrosis in chronic hepatitis C (CHC). The G allele of the MTP gene promoter, -493G/T, has been associated with lower transcriptional activity than the T allele. We investigated this association with metabolic and histological variables in patients with CHC. A total of 174 untreated patients with CHC were genotyped for MTP -493G/T by direct sequencing using PCR. All patients were negative for markers of Wilson’s disease, hemochromatosis and autoimmune diseases and had current and past daily alcohol intake lower than 100 g/week. The sample distribution was in Hardy-Weinberg equilibrium. Among subjects with genotype 1, 56.8% of the patients with fibrosis grade 3+4 presented at least one G allele versus 34.3% of the patients with fibrosis grade 1+2 (OR = 1.8; 95%CI = 1.3-2.3). Logistic regression analysis with steatosis as the dependent variable identified genotypes GG+GT as independent protective factors against steatosis (OR = 0.4, 95%CI = 0.2-0.8; P = 0.01). The results suggest that the presence of the G allele of MTP -493G/T associated with lower hepatic MTP expression protects against steatosis in our CHC patients.
Resumo:
The relationship of body weight (BW) with white adipose tissue (WAT) mass and WAT gene expression pattern was investigated in mice submitted to physical training (PT). Adult male C57BL/6 mice were submitted to two 1.5-h daily swimming sessions (T, N = 18), 5 days/week for 4 weeks or maintained sedentary (S, N = 15). Citrate synthase activity increased significantly in the T group (P < 0.05). S mice had a substantial weight gain compared to T mice (4.06 ± 0.43 vs 0.38 ± 0.28 g, P < 0.01). WAT mass, adipocyte size, and the weights of gastrocnemius and soleus muscles, lung, kidney, and adrenal gland were not different. Liver and heart were larger and the spleen was smaller in T compared to S mice (P < 0.05). Food intake was higher in T than S mice (4.7 ± 0.2 vs 4.0 ± 0.3 g/animal, P < 0.05) but oxygen consumption at rest did not differ between groups. T animals showed higher serum leptin concentration compared to S animals (6.37 ± 0.5 vs 3.11 ± 0.12 ng/mL). WAT gene expression pattern obtained by transcription factor adipocyte determination and differentiation-dependent factor 1, fatty acid synthase, malic enzyme, hormone-sensitive lipase, adipocyte lipid binding protein, leptin, and adiponectin did not differ significantly between groups. Collectively, our results showed that PT prevents BW gain and maintains WAT mass due to an increase in food intake and unchanged resting metabolic rate. These responses are closely related to unchanged WAT gene expression patterns.
Resumo:
We identified different lipemic and metabolic responses after the ingestion of a standardized meal by healthy adults and related them to atherosclerotic markers. Samples from 60 normolipidemic adults were collected before and after a liquid meal (40 g fat/m² body surface) at 0, 2, 4, 6, and 8 h for measurements of lipids, free fatty acids (FFA), insulin, cholesteryl ester transfer protein (CETP), autoantibodies to epitopes of oxidized LDL (oxLDL Ab), lipolytic activities, and apolipoprotein E polymorphism. Mean carotid intima-media thickness (cIMT) was determined by Doppler ultrasound. The volunteers were classified into early (N = 39) and late (N = 31) triacylglycerol (TAG) responders to the test meal. Late responders showed lower HDL cholesterol concentration at fasting and in the TAG peak, lower insulin and higher FFA concentrations compared to early responders. Multivariate regression analyses showed that mean cIMT was associated with gender (male) and age in early responders and by cholesterol levels at the 6th hour in late responders. oxLDL Ab were explained by lipoprotein lipase and negatively by hepatic lipase and oxLDL Ab (fasting period) by CETP (negative) and FFA (positive). This study is the first to identify a postalimentary insulin resistance state, combined with a reduced CETP response exclusively among late responders, and the identification of the regulators of postalimentary atherogenicity. Further research is required to determine the metabolic mechanisms described in the different postalimentary phenotypes observed in this study, as well as in different pathological states, as currently investigated in our laboratory.
Resumo:
Introduction Although the initiation of highly active antiretroviral therapy (HAART) is accompanied by an attenuation of viral load, metabolic disorders characterized by hyperglycemia, dyslipidemia, and lipodystrophy are often observed in patients under this treatment. Certain foods, such as oat bran, soy protein, and flaxseed, have been shown to improve a patient's lipid profile despite possible increases in uricemia. Thus, a bioactive compound was formulated using these foods to help patients with HIV/AIDS control metabolic disorders resulting from HAART. Methods An uncontrolled before and after study was performed. The total cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides, and uric acid before and after 3 months of consuming the formulation were compared in patients. The compound was formulated such that 40g (the recommended daily intake) contained approximately 10g of flaxseed, 20g of oat bran, and 10g of textured soy protein. Results The study population consisted of 139 patients, 31 of whom were included in the final analysis. There were no significant variations between the laboratory results obtained before and after consumption of the compound. Conclusions The regular consumption of the formulation together with individualized dietary guidance did not reduce lipid levels and did not contribute to an increase in uricemia in the study group. However, new studies with higher doses of the foods that compose the formulation should be encouraged to investigate whether these foods can positively influence the lipid profiles of these patients.
Resumo:
Fish meal free diets were formulated to contain graded protein levels as 25% (diet 1), 30% (diet 2), 35% (diet 3) and 40% (diet 4). The diets were fed to tambaqui juveniles (Colossoma macropomum) (46.4 ± 6.3g) in randomly designed recirculating systems for 60 days, to determine the optimum protein requirement for the fish. The final weight of the fish, weight gain (28.1, 28.5, 32.2, 28.0g) and specific growth rate increased (P>0.05) consistently with increasing dietary protein up to treatment with 35% protein diet and then showed a declining trend. Feed intake followed the same trend resulting in best feed efficiency (62.5%) in fish fed diet with 35% protein. Similarly, the protein intake increased significantly with increasing dietary protein levels and reduced after the fish fed with 35% protein; while protein efficiency ratio (2.28, 1.99, 1.87, 1.74) decreased with increasing dietary protein levels. Carcass ash and protein had linear relationship with dietary protein levels while the lipid showed a decreasing trend. Ammonia content (0.68, 0.73, 0.81, 1.21 mg L-1) of the experimental waters also increased (P<0.05) with increasing protein levels while pH, dissolved oxygen and temperature remained fairly constant without any clear pattern of inclination. Broken-line estimation of the weight gain indicated 30% protein as the optimum requirement for the fish.
Resumo:
OBJECTIVE: To describe the lipid profile and to verify its relationship with cardiovascular disease risk factors in students at a public university in São Paulo. METHODS: After obtaining clinical, anthropomorphic, and lipid profile data from 118 students, variables of the lipid profile were related to other risk factors. RESULTS: The mean age of the students was 20.3 years (SD=1.5). The risk of cardiovascular disease was characterized by a positive family history of ischemic heart disease in 38.9%; sedentariness in 35.6%; limiting and increased total and LDL-C cholesterol levels in 17.7% and 10.2%, respectively; decreased HDL-C levels in 11.1%; increased triglyceride levels in 11.1%; body mass index >25 in 8.5%, and smoking in 6.7% of the subjects. Students' diet was found to be inadequate regarding protein, total fat, saturated fat, sodium, and fiber contents. A statistically significant association between cholesterol and contraceptive use, between HDL-C and contraceptive use, age and percent body fat, and triglycerides and percent lean weight was observed. CONCLUSION: A high prevalence of some risk factors of cardiovascular disease as well as the association between these factors with altered lipid profiles was observed in the young population studied.