54 resultados para Leptin receptor (Ob-R)
em Scielo Saúde Pública - SP
Resumo:
The objective of the present study was to investigate the effect of leptin on the progression of colorectal carcinoma to metastatic disease by analyzing the serum leptin concentration and Ob-R gene expression in colon cancer tissues. Tissue samples were obtained from 31 patients who underwent surgical resection for colon (18 cases) and metastatic colon (13 cases) cancer. Serum leptin concentration was determined by an enzyme-linked immunosorbent assay (ELISA) and Ob-R mRNA expression by real-time polymerase chain reaction (RT-PCR) for both groups. ELISA data were analyzed by the Student t-test and RT-PCR data were analyzed by the Mann-Whitney U-test. RT-PCR results demonstrated that mRNA expression of Ob-R in human metastatic colorectal cancer was higher than in local colorectal cancer tissues. On the other hand, mean serum leptin concentration was significantly higher in local colorectal cancer patients compared to patients with metastatic colorectal cancer. The results of the present study suggest a role for leptin in the progression of colon cancer to metastatic disease without weight loss. In other words, significantly increased Ob-R mRNA expression and decreased serum leptin concentration in patients with metastatic colon cancer indicate that sensitization to leptin activity may be a major indicator of metastasis to the colon tissue and the determination of leptin concentration and leptin gene expression may be used to aid the diagnosis.
Resumo:
This paper centers on some whole-istic organizational and functional aspects of hepatic Schistosoma mansoni granuloma, which is an extremely complex system. First, it structurally develops a collagenic topology, originated bidirectionally from an inward and outward assembly of growth units. Inward growth appears to be originated from myofibroblasts derived from small portal vessel around intravascular entrapped eggs, while outward growth arises from hepatic stellate cells. The auto-assembly of the growth units defines the three-dimensional scaffold of the schistosome granulomas. The granuloma surface irregularity and its border presented fractal dimension equal to 1.58. Second, it is internally regulated by intricate networks of immuneneuroendocrine stimuli orchestrated by leptin and leptin receptors, substance P and Vasoactive intestinal peptide. Third, it can reach the population of ± 40,000 cells and presents an autopoietic component evidenced by internal proliferation (Ki-67+ Cells), and by expression of c-Kit+ Cells, leptin and leptin receptor (Ob-R), granulocyte-colony stimulating factor (G-CSF-R), and erythropoietin (Epo-R) receptors. Fourth, the granulomas cells are intimately connected by pan-cadherins, occludin and connexin-43, building a state of closing (granuloma closure). In conclusion, the granuloma is characterized by transitory stages in such a way that its organized structure emerges as a global property which is greater than the sum of actions of its individual cells and extracellular matrix components.
Resumo:
Nephrogenic diabetes insipidus (NDI) is a rare disease characterized by renal inability to respond properly to arginine vasopressin due to mutations in the vasopressin type 2 receptor (V2(R)) gene in affected kindreds. In most kindreds thus far reported, the mode of inheritance follows an X chromosome-linked recessive pattern although autosomal-dominant and autosomal-recessive modes of inheritance have also been described. Studies demonstrating mutations in the V2(R) gene in affected kindreds that modify the receptor structure, resulting in a dys- or nonfunctional receptor have been described, but phenotypically indistinguishable NDI patients with a structurally normal V2(R) gene have also been reported. In the present study, we analyzed exon 3 of the V2(R) gene in 20 unrelated individuals by direct sequencing. A C®T alteration in the third position of codon 331 (AGC®AGT), which did not alter the encoded amino acid, was found in nine individuals, including two unrelated patients with NDI. Taken together, these observations emphasize the molecular heterogeneity of a phenotypically homogeneous syndrome
Resumo:
Obesity is the most common cause of human essential hypertension in most industrialized countries. Although the precise mechanisms of obesity hypertension are not fully understood, considerable evidence suggests that excess renal sodium reabsorption and a hypertensive shift of pressure natriuresis play a major role. Sympathetic activation appears to mediate at least part of the obesity-induced sodium retention and hypertension since adrenergic blockade or renal denervation markedly attenuates these changes. Recent observations suggest that leptin and its multiple interactions with neuropeptides in the hypothalamus may link excess weight gain with increased sympathetic activity. Leptin is produced mainly in adipocytes and is believed to regulate energy balance by acting on the hypothalamus to reduce food intake and to increase energy expenditure via sympathetic activation. Short-term administration of leptin into the cerebral ventricles increases renal sympathetic activity, and long-term leptin infusion at rates that mimic plasma concentrations found in obesity raises arterial pressure and heart rate via adrenergic activation in non-obese rodents. Transgenic mice overexpressing leptin also develop hypertension. Acute studies suggest that the renal sympathetic effects of leptin may depend on interactions with other neurochemical pathways in the hypothalamus, including the melanocortin-4 receptor (MC4-R). However, the role of this pathway in mediating the long-term effects of leptin on blood pressure is unclear. Also, it is uncertain whether there is resistance to the chronic renal sympathetic and blood pressure effects of leptin in obese subjects. In addition, leptin also has other cardiovascular and renal actions, such as stimulation of nitric oxide formation and improvement of insulin sensitivity, which may tend to reduce blood pressure in some conditions. Although the role of these mechanisms in human obesity has not been elucidated, this remains a fruitful area for further investigation, especially in view of the current "epidemic" of obesity in most industrialized countries.
Resumo:
Adrenal glucocorticoid secretion is regulated by adrenocorticotropic hormone (ACTH) acting through a specific cell membrane receptor (ACTH-R). The ACTH-R is a member of the G protein superfamily-coupled receptors and belongs to the subfamily of melanocortin receptors. The ACTH-R is mainly expressed in the adrenocortical cells showing a restricted tissue specificity, although ACTH is recognized by the other four melanocortin receptors. The cloning of the ACTH-R was followed by the study of this gene in human diseases such as familial glucocorticoid deficiency (FGD) and adrenocortical tumors. FGD is a rare autosomal recessive disease characterized by glucocorticoid deficiency, elevated plasma ACTH levels and preserved renin/aldosterone secretion. This disorder has been ascribed to an impaired adrenal responsiveness to ACTH due to a defective ACTH-R, a defect in intracellular signal transduction or an abnormality in adrenal cortical development. Mutations of the ACTH-R have been described in patients with FGD in segregation with the disease. The functional characterization of these mutations has been prevented by difficulties in expressing human ACTH-R in cells that lack endogenous melanocortin receptor activity. To overcome these difficulties we used Y6 cells, a mutant variant of the Y1 cell line, which possesses a non-expressed ACTH-R gene allowing the functional study without any background activity. Our results demonstrated that the several mutations of the ACTH-R found in FGD result in an impaired cAMP response or loss of sensitivity to ACTH stimulation. An ACTH-binding study showed an impairment of ligand binding with loss of the high affinity site in most of the mutations studied.
Resumo:
Adrenocorticotrophin (ACTH) is the major regulatory hormone of steroid synthesis and secretion by adrenocortical cells. The actions of ACTH are mediated by its specific membrane receptor (ACTH-R). The human ACTH-R gene was recently cloned, allowing systematic determination of its sequence, expression and function in adrenal tumorigenesis. The presence of oncogenic mutations of the ACTH-R gene in adrenocortical tumors has been reported. Direct sequencing of the entire coding region of the ACTH-R gene of sporadic adrenocortical adenomas and carcinomas did not reveal constitutive activating mutations, indicating that this mechanism is not frequent in human adrenocortical tumorigenesis. Recent studies demonstrated allelic loss of the ACTH-R gene in a subset of sporadic adrenocortical tumors using a PstI polymorphism located in the promoter region of the ACTH-R gene. Loss of heterozygosity of the ACTH-R was analyzed in 20 informative patients with a variety of benign and malignant adrenocortical tumors. Three of them showed loss of heterozygosity of the ACTH-R gene. In addition, Northern blot experiments demonstrated reduced expression of ACTH-R mRNA in these three tumors with loss of heterozygosity, suggesting the functional significance of this finding at the transcriptional level. Deletion of the ACTH-R gene seems to be involved in a subset of human adrenocortical tumors, contributing to cellular dedifferentiation.
Resumo:
Growing consistent evidence indicates that hypofunction of N-methyl-D-aspartate (NMDA) transmission plays a pivotal role in the neuropathophysiology of schizophrenia. Hence, drugs which modulate NMDA neurotransmission are promising approaches to the treatment of schizophrenia. The aim of this article is to review clinical trials with novel compounds acting on the NMDA receptor (NMDA-R). This review also includes a discussion and translation of neuroscience into schizophrenia therapeutics. Although the precise mechanism of action of minocycline in the brain remains unclear, there is evidence that it blocks the neurotoxicity of NMDA antagonists and may exert a differential effect on NMDA signaling pathways. We, therefore, hypothesize that the effects of minocycline on the brain may be partially modulated by the NMDA-R or related mechanisms. Thus, we have included a review of minocycline neuroscience. The search was performed in the PubMed, Web of Science, SciELO, and Lilacs databases. The results of glycine and D-cycloserine trials were conflicting regarding effectiveness on the negative and cognitive symptoms of schizophrenia. D-serine and D-alanine showed a potential effect on negative symptoms and on cognitive deficits. Sarcosine data indicated a considerable improvement as adjunctive therapy. Finally, minocycline add-on treatment appears to be effective on a broad range of psychopathology in patients with schizophrenia. The differential modulation of NMDA-R neurosystems, in particular synaptic versus extrasynaptic NMDA-R activation and specific subtypes of NMDA-R, may be the key mediators of neurogenesis and neuroprotection. Thus, psychotropics modulating NMDA-R neurotransmission may represent future monotherapy or add-on treatment strategies in the treatment of schizophrenia.
Resumo:
Estradiol participates in the control of energy homeostasis, as demonstrated by an increase in food intake and in body weight gain after ovariectomy in rats. In the present study, female Wistar rats (200-230 g, N = 5-15 per group), with free access to chow, were individually housed in metabolic cages. We investigated food intake, body weight, plasma leptin levels, measured by specific radioimmunoassay, and the hypothalamic mRNA expression of orexigenic and anorexigenic neuropeptides, determined by real-time PCR, in ovariectomized rats with (OVX+E) and without (OVX) estradiol cypionate treatment (10 µg/kg body weight, sc, for 8 days). Hormonal and mRNA expression were determined at pre-feeding and 4 h after food intake. OVX+E rats showed lower food intake, less body weight gain and lower plasma leptin levels. In the OVX+E group, we also observed a reduction of neuropeptide Y (NPY), agouti-related protein (AgRP) and cocaine- and amphetamine-regulated transcript (CART) mRNA expression in the arcuate nucleus and a decrease in orexin A in the lateral hypothalamic area (LHA). There was an increase in leptin receptor (LepRb), melanocortin-4 receptor (MC4-R), CART, and mainly corticotropin-releasing hormone (CRH) mRNA in the paraventricular nucleus and LepRb and CART mRNA in the LHA. These data show that hypophagia induced by estradiol treatment is associated with reduced hypothalamic expression of orexigenic peptides such as NPY, AgRP and orexin A, and increased expression of the anorexigenic mediators MC4-R, LepRb and CRH. In conclusion, estradiol decreases food intake, and this effect seems to be mediated by peripheral factors such as leptin and the differential mRNA expression of neuropeptides in the hypothalamus.
Resumo:
The objective of this study was to observe possible interactions between the renin-angiotensin and nitrergic systems in chronic hypoxia-induced pulmonary hypertension in newborn piglets. Thirteen chronically instrumented newborn piglets (6.3 ± 0.9 days; 2369 ± 491 g) were randomly assigned to receive saline (placebo, P) or the AT1 receptor (AT1-R) blocker L-158,809 (L) during 6 days of hypoxia (FiO2 = 0.12). During hypoxia, pulmonary arterial pressure (Ppa; P < 0.0001), pulmonary vascular resistance (PVR; P < 0.02) and the pulmonary to systemic vascular resistance ratio (PVR/SVR; P < 0.05) were significantly attenuated in the L (N = 7) group compared to the P group (N = 6). Western blot analysis of lung proteins showed a significant decrease of endothelial NOS (eNOS) in both P and L animals, and of AT1-R in P animals during hypoxia compared to normoxic animals (C group, N = 5; P < 0.01 for all groups). AT1-R tended to decrease in L animals. Inducible NOS (iNOS) did not differ among P, L, and C animals and iNOS immunohistochemical staining in macrophages was significantly more intense in L than in P animals (P < 0.01). The vascular endothelium showed moderate or strong eNOS and AT1-R staining. Macrophages and pneumocytes showed moderate or strong iNOS and AT1-R staining, but C animals showed weak iNOS and AT1-R staining. Macrophages of L and P animals showed moderate and weak AT2-R staining, respectively, but the endothelium of all groups only showed weak staining. In conclusion, pulmonary hypertension induced by chronic hypoxia in newborn piglets is partially attenuated by AT1-R blockade. We suggest that AT1-R blockade might act through AT2-R and/or Mas receptors and the nitrergic system in the lungs of hypoxemic newborn piglets.
Resumo:
It has been demonstrated that parotid glands of rats infected with Trypanosoma cruzi present severe histological alterations; changes include reduction in density and volume of the acini and duct systems and an increase in connective tissue. We evaluated the association between morphological changes in parotid glands, circulating testosterone levels and epidermal growth factor receptor (EGF-R) expression in experimental Chagas disease in rats. Animals at 18 days of infection (acute phase) showed a significant decrease in body weight, serum testosterone levels and EGF-R expression in the parotid gland compared with a control group. Since decreases in body weight could lead to a reduction in circulating testosterone concentration, we believe that the reduction in EGF-R expression in parotid glands of infected rats is due to alterations in testosterone levels and atrophy of parotid glands is caused by changes in EGF-R expression. Additionally, at 50 days (chronic phase) of infection parotid glands showed a normal histological aspect likely due to the normalization of the body weight. These findings suggest that the testosterone-EGF-R axis is involved in the histological changes.
Resumo:
We determined whether ANP (atrial natriuretic peptide) concentrations, measured by radioimmunoassay, in the ANPergic cerebral regions involved in regulation of sodium intake and excretion and pituitary gland correlated with differences in sodium preference among 40 Wistar male rats (180-220 g). Sodium preference was measured as mean spontaneous ingestion of 1.5% NaCl solution during a test period of 12 days. The relevant tissues included the olfactory bulb (OB), the posterior and anterior lobes of the pituitary gland (PP and AP, respectively), the median eminence (ME), the medial basal hypothalamus (MBH), and the region anteroventral to the third ventricle (AV3V). We also measured ANP content in the right (RA) and left atrium (LA) and plasma. The concentrations of ANP in the OB and the AP were correlated with sodium ingestion during the preceding 24 h, since an increase of ANP in these structures was associated with a reduced ingestion and vice-versa (OB: r = -0.3649, P<0.05; AP: r = -0.3291, P<0.05). Moreover, the AP exhibited a correlation between ANP concentration and mean NaCl intake (r = -0.4165, P<0.05), but this was not the case for the OB (r = 0.2422). This suggests that differences in sodium preference among individual male rats can be related to variations of AP ANP level. Earlier studies indicated that the OB is involved in the control of NaCl ingestion. Our data suggest that the OB ANP level may play a role mainly in day-to-day variations of sodium ingestion in the individual rat
Resumo:
The OB protein, also known as leptin, is secreted by adipose tissue, circulates in the blood, probably bound to a family of binding proteins, and acts on central neural networks regulating ingestive behavior and energy balance. The two forms of leptin receptors (long and short forms) have been identified in various peripheral tissues, a fact that makes them possible target sites for a direct action of leptin. It has been shown that the OB protein interferes with insulin secretion from pancreatic islets, reduces insulin-stimulated glucose transport in adipocytes, and increases glucose transport, glycogen synthesis and fatty acid oxidation in skeletal muscle. Under normoglycemic and normoinsulinemic conditions, leptin seems to shift the flux of metabolites from adipose tissue to skeletal muscle. This may function as a peripheral mechanism that helps control body weight and prevents obesity. Data that substantiate this hypothesis are presented in this review.
Resumo:
The aim of the present study was to assess the effects of endurance training on leptin levels and adipose tissue gene expression and their association with insulin, body composition and energy intake. Male Wistar rats were randomly divided into two groups: trained (N = 18) and sedentary controls (N = 20). The trained group underwent swimming training for 9 weeks. Leptin and insulin levels, adiposity and leptin gene expression in epididymal and inguinal adipose tissue were determined after training. There were no differences in energy intake between groups. Trained rats had a decreased final body weight (-10%), relative and total body fat (-36 and -55%, respectively) and insulin levels (-55%) compared with controls (P < 0.05). Although trained animals showed 56% lower leptin levels (2.58 ± 1.05 vs 5.89 ± 2.89 ng/mL in control; P < 0.05), no difference in leptin gene expression in either fat depot was demonstrable between groups. Stepwise multiple regression analysis showed that lower leptin levels in trained rats were due primarily to their lower body fat mass. After adjustment for total body fat, leptin levels were still 20% (P < 0.05) lower in exercised rats. In conclusion, nine weeks of swimming training did not affect leptin gene expression, but did lead to a decrease in leptin levels that was independent of changes in body fat.
Resumo:
Trypanomastigote forms of Trypanosoma cruzi were derived from tissue culture and incubated with immune and non-immune human sera. All immune sera showed high titers of specific humoral antibodies of the IgM or the IgG type. Agglutination and swelling of parasites were observed after incubation at 37ºC, but many trypomastigotes remained free-swimming in the sera for two to three days. The quantitiy of immune serum capable of lysing a maximum of 10 x 10 [raised to the power of 6] sensitized red cells was not capable of lysing 4 x 10 [raised to the power of 3] tripomastigotes. Typically, the parasites underwent cyclical changes with the formation of clumps of amastigotes and the appearance of epimastigote forms. Multiplication of the parasites was observed in immune sera. Further, the infectivity of the parasites to susceptible mice was not lost. All sera used produced similar general effects on the growth of the parasite. The antibody bound to T. cruzi appeard to enter cells by antigen-receptor mediated endocytosis. The ferritin-conjugated antibody was internalized and delivered to phagolysosomes where they might be completely degraded to amino-acids. This seemed to be a coupled process by which the immunoglobulin is first bound to specific parasite surface receptor and then rapidly endocytosed by the cell.