192 resultados para Leishmanicidal activity
em Scielo Saúde Pública - SP
Resumo:
In this study, a methanolic extract from Echinaster (Othilia) echinophorus was evaluated for activity against Leishmania amazonensis. The extract showed activity against the promastigote and amastigote forms with IC50 values of 62.9 and 37.5 μg.mL-1 respectively. This extract showed a moderate toxicity on macrophages from BALB/c mice. A dose of 100 mg/kg/day was effective when administered during 15 days by intraperitoneal route to BALB/c mice infected experimentally.
Resumo:
In this study we investigated the efficacy of hyperbaric oxygen (HBO) therapy, alone or combined with the pentavalent antimonial glucantime on Leishmania amazonensis infection. In parallel, the effect of Brazilian red propolis gel (propain) alone or combined with glucantime on L. amazonensis infection was evaluated. The inhibition of the infection in macrophages treated with glucantime in combination with HBO exposition was greater than that of macrophages treated with glucantime alone or HBO alone. The susceptible mouse strain BALB/c infected in the shaved rump with L. amazonensis treated with glucantime and exposed to HBO showed: time points in the course of the disease in which lesions were smaller than those of mice treated with glucantime alone and revascularization of the skin in the lesion site; interferon-gamma (IFN-g) levels were not elevated in lymph node cells from these animals. Propain alone was not efficient against lesions, although less exudative lesions were observed in animals treated with propain alone or combined with glucantime. These results reveal the potential value of HBO and red propolis in combination with glucantime for treating cutaneous leishmaniasis and encourage further studies on the effect of more aggressive HBO, propolis and glucantime therapies on different mouse models of leishmaniasis.
Resumo:
INTRODUCTION: Visceral leishmaniasis is endemic in 88 countries, with a total of 12 million people infected and 350 million at risk. In the search for new leishmanicidal agents, alkaloids and acetogenins isolated from leaves of Annona squamosa and seeds of Annona muricata were tested against promastigote and amastigote forms of Leishmania chagasi. METHODS: Methanol-water (80:20) extracts of A. squamosa leaves and A. muricata seeds were extracted with 10% phosphoric acid and organic solvents to obtain the alkaloid and acetogenin-rich extracts. These extracts were chromatographed on a silica gel column and eluted with a mixture of several solvents in crescent order of polarity. The compounds were identified by spectroscopic analysis. The isolated compounds were tested against Leishmania chagasi, which is responsible for American visceral leishmaniasis, using the MTT test assay. The cytotoxicity assay was evaluated for all isolated compounds, and for this assay, RAW 264.7 cells were used. RESULTS: O-methylarmepavine, a benzylisoquinolinic alkaloid, and a C37 trihydroxy adjacent bistetrahydrofuran acetogenin were isolated from A. squamosa, while two acetogenins, annonacinone and corossolone, were isolated from A. muricata. Against promastigotes, the alkaloid showed an IC50 of 23.3 µg/mL, and the acetogenins showed an IC50 ranging from 25.9 to 37.6 µg/mL; in the amastigote assay, the IC50 values ranged from 13.5 to 28.7 µg/mL. The cytotoxicity assay showed results ranging from 43.5 to 79.9 µg/mL. CONCLUSIONS: These results characterize A. squamosa and A. muricata as potential sources of leishmanicidal agents. Plants from Annonaceae are rich sources of natural compounds and an important tool in the search for new leishmanicidal therapies.
Resumo:
Abstract: INTRODUCTION: Leishmaniasis is a zoonotic disease caused by protozoa of the genus Leishmania . Cutaneous leishmaniasis is the most common form, with millions of new cases worldwide each year. Treatments are ineffective due to the toxicity of existing drugs and the resistance acquired by certain strains of the parasite. METHODS: We evaluated the activity of sodium nitroprusside in macrophages infected with Leishmania (Leishmania) amazonensis . Phagocytic and microbicidal activity were evaluated by phagocytosis assay and promastigote recovery, respectively, while cytokine production and nitrite levels were determined by ELISA and by the Griess method. Levels of iNOS and 3-nitrotyrosine were measured by immunocytochemistry. RESULTS: Sodium nitroprusside exhibited in vitro antileishmanial activity at both concentrations tested, reducing the number of amastigotes and recovered promastigotes in macrophages infected with L. amazonensis . At 1.5µg/mL, sodium nitroprusside stimulated levels of TNF-α and nitric oxide, but not IFN-γ. The compound also increased levels of 3-nitrotyrosine, but not expression of iNOS, suggesting that the drug acts as an exogenous source of nitric oxide. CONCLUSIONS: Sodium nitroprusside enhances microbicidal activity in Leishmania -infected macrophages by boosting nitric oxide and 3-nitrotyrosine.
Resumo:
The in vitro leishmanicidal activity of miltefosine® (Zentaris GmbH) was assessed against four medically relevant Leishmania species of Brazil: Leishmania (Leishmania) amazonensis, Leishmania (Viannia) braziliensis, Leishmania (Viannia) guyanensis and Leishmania (Leishmania) chagasi. The activity of miltefosine against these New World species was compared to its activity against the Old World strain, Leishmania (Leishmania) donovani, which is known to be sensitive to the effects of miltefosine. The IC50 and IC90 results suggested the New World species harboured similar in vitro susceptibilities to miltefosine; however, miltefosine was approximately 20 times more active against the Old World L. (L.) donovani than against the New World L. (L.) chagasi species. The selectivity index varied from 17.2-28.9 for the New World Leishmania species and up to 420.0 for L. (L.) donovani. The differences in susceptibility to miltefosine suggest that future clinical trials with this drug should include a laboratory pre-evaluation and a dose-defining step.
Resumo:
There are several experimental evidences that nitric oxide (NO) is involved in the microbicidal activity of macrophages against a number of intracellular pathogens including Leishmania major, Trypanozoma cruzi, Toxoplasma gondii. It is also well known that eosinophils (EO) have microbicidal activity against many parasites such as Schistosoma mansoni, Trichinella spiralis, T. cruzi and L. amazonensis. The purpose of this study was to investigate if NO is involved in the microbicidal activity of EO against L. major. Eosinophils harvested from peritoneal cavity of rats released spontaneously after 24 and 48 hr a small amount of nitrite. This release was enhanced by the treatment of cells with IFN-gamma (200 IU/ml). This release was blocked by addition of the NO synthase inhibitor, L-NIO (100 mu M) into the culture. To determinate the leishmanicidal activity of eosinophils the parasites were incubated with activated eosinophils with IFN-gamma and the ability of surviving parasites to incorporate [³H]thymidine was evaluated. IFN-gamma-activated eosinophils were able to kill L. major and to release high levels of nitrite. The ability to destroy L. major and the release of NO were completely blocked by L-NIO. These results indicate that activated eosinophils release NO which is involved in the microbicidal activity of these cells against L. major.
Resumo:
The leishmanicidal activity of four batches of meglumine antimoniate, produced in Farmanguinhos-Fiocruz, Brazil (TAMs), was assessed and compared to Glucantime®-Aventis Pharma Ltda. Using the amastigote-like in vitro model, the active concentrations of Sb v varied from 10µg/ml to 300 µg/ml for L. (L.) chagasi and from 50µg/ml to 300µg/ml for L. (L.) amazonensis, with no statistically significant differences among the four batches of TAMs and Glucantime®. The inhibitory concentrations (IC50) determined by the amastigote-infected macrophage model for TAM01/03 and Glucantime® were, respectively: 26.3µg/ml and 127.6µg/ml for L. chagasi, 15.4µg /ml and 22.9µg/ml for L. amazonensis, and 12.1µg/ml and 24.2µg/ml for L. (V.) braziliensis. The activities of the four batches of TAMs were confirmed in an in vivo model by assessing, during eight weeks skin lesions caused by L. braziliensis in hamster that were treated with 20mg Sb v/Kg/day for 30 consecutive days. The meglumine antimoniate produced by Farmanguinhos was as effective as the reference drug, Glucantime®-Aventis, against three species of Leishmania that are of medical importance in Brazil.
Resumo:
A series of ring substituted 3-phenyl-1-(1,4-di-N-oxide quinoxalin-2-yl)-2-propen-1-one derivatives were synthesized and tested for in vitro leishmanicidal activity against amastigotes of Leishmania amazonensis in axenical cultures and murine infected macrophages. Structure-activity relationships demonstrated the importance of a radical methoxy at position R3', R4' and R5'. (2E)-3-(3,4,5-trimethoxy-phenyl)-1-(3,6,7-trimethyl-1,4-dioxy-quinoxalin-2-yl)-propenone was the most active. Cytotoxicity on macrophages revealed that this product was almost six times more active than toxic.
Resumo:
We extended our previous exploration of sulfur bridges as bioisosteric replacements for atoms forming the bridge between the aromatic rings of combretastatin A-4. Employing coupling reactions between 5-iodo-1,2,3-trimethoxybenzene and substituted thiols, followed by oxidation to sulfones with m-CPBA, different locations for attaching the sulfur atom to ring A through the synthesis of nine compounds were examined. Antitubulin activity was performed with electrophoretically homogenous bovine brain tubulin, and activity occurred with the 1,2,3-trimethoxy-4-[(4-methoxyphenyl)thio]benzene (12), while the other compounds were inactive. The compounds were also tested for leishmanicidal activity using promastigote forms of Leishmania braziliensis (MHOM/BR175/M2904), and the greatest activity was observed with 1,2,3-trimethoxy-4-(phenylthio)benzene (10) and 1,2,3-trimethoxy-4-[(4-methoxyphenyl) sulfinyl]benzene (15).
Resumo:
The phytochemical investigation of the stem bark and leaves of G. elliptica provided a mixture of the norisoprenoids blumenol B and 6-epiblumenol B along with the triterpenes friedelin, as the major constituent, friedelanol, ursa-9(11),12-dien-3-ol, a-amyrin, β-amyrin, morentenol, epifriedelanol, as well as the sesquiterpenes trans-caryophyllene, α-humulene, ethyl hydnocarpate and other fatty acid esters. The identification of the compounds was performed on basis of spectrometric methods such as GC-MS, IR, MS and 1D and 2D NMR. Stem bark extracts showed significant leishmanicidal activity against promastigote forms of Leishmania braziliensis, with the best results for the chloroform extract.
Resumo:
This paper evaluates CHCl3 and CH3OH extracts of the stem bark, branches and leaves of Drimys brasiliensis and drimane sesquiterpenes isolated from the stem bark against strains of Leishmania amazonensis and Leishmania braziliensis promastigotes and Plasmodium falciparum trophozoites. All of the extracts and compounds were tested in cell lines in comparison with reference standards and cell viability was determined by the XTT method. The CHCl3 and CH3OH extracts from the stem bark and branches yielded promising results against two strains of Leishmania, with 50% inhibitory concentrations (IC50 ) values ranging from 39-100 µg/mL. The CHCl3 extract of the stem bark returned IC50 values of 39 and 40.6 µg/mL for L. amazonensis and L. braziliensis, respectively. The drimanes were relatively effective: 1-β-(p-coumaroyloxy)-polygodial produced IC50 values of 5.55 and 2.52 µM for L. amazonensis and L. braziliensis, respectively, compared with 1-β-(p-methoxycinnamoyl)-polygodial, which produced respective IC50 values of 15.85 and 17.80 µM. The CHCl3 extract demonstrated activity (IC50 of 3.0 µg/mL) against P. falciparum. The IC50 values of 1-β-(p-cumaroyloxyl)-polygodial and 1-β-(p-methoxycinnamoyl)-polygodial were 1.01 and 4.87 µM, respectively, for the trophozoite strain. Therefore, the results suggest that D. brasiliensis is a promising plant from which to obtain new and effective antiparasitic agents.
Resumo:
Extracts of propolis samples collected in Brazil and Bulgaria were assayed against four Leishmania species - Leishmania amazonensis, L. braziliensis, L. chagasi from the New World, and L. major from the Old World - associated to different clinical forms of leishmaniasis. The composition of the extracts has been previously characterized by high temperature high resolution gas chromatography coupled to mass spectrometry. Considering the chemical differences among the extracts and the behavior of the parasites, it was observed significant differences in the leishmanicidal activities with IC50/1 day values in the range of 2.8 to 229.3 µg/ml . An overall analysis showed that for all the species evaluated, Bulgarian extracts were more active than the ethanol Brazilian extract. As the assayed propolis extracts have their chemical composition determined it merits further investigation the effect of individual components or their combinations on each Leishmania species.
Resumo:
This study is the first phytochemical investigation of Selaginella sellowii and demonstrates the antileishmanial activity of the hydroethanolic extract from this plant (SSHE), as well as of the biflavonoids amentoflavone and robustaflavone, isolated from this species. The effects of these substances were evaluated on intracellular amastigotes of Leishmania (Leishmania) amazonensis, an aetiological agent of American cutaneous leishmaniasis. SSHE was highly active against intracellular amastigotes [the half maximum inhibitory concentration (IC50) = 20.2 µg/mL]. Fractionation of the extract led to the isolation of the two bioflavonoids with the highest activity: amentoflavone, which was about 200 times more active (IC50 = 0.1 μg/mL) and less cytotoxic than SSHE (IC50 = 2.2 and 3 μg/mL, respectively on NIH/3T3 and J774.A1 cells), with a high selectivity index (SI) (22 and 30), robustaflavone, which was also active against L. amazonensis (IC50 = 2.8 µg/mL), but more cytotoxic, with IC50 = 25.5 µg/mL (SI = 9.1) on NIH/3T3 cells and IC50 = 3.1 µg/mL (SI = 1.1) on J774.A1 cells. The production of nitric oxide (NO) was lower in cells treated with amentoflavone (suggesting that NO does not contribute to the leishmanicidal mechanism in this case), while NO release was higher after treatment with robustaflavone. S. sellowii may be a potential source of biflavonoids that could provide promising compounds for the treatment of cutaneous leishmaniasis.
Resumo:
This study examined whether the antidermatophytic activity of essential oils (EOs) can be used as an indicator for the discovery of active natural products against Leishmania amazonensis. The aerial parts of seven plants were hydrodistilled. Using broth microdilution techniques, the obtained EOs were tested against three strains of dermatophytes (Trichophyton mentagrophytes, Microsporum gypseum and Microsporum canis). To compare the EOs antifungal and antiparasitic effects, the EOs activities against axenic amastigotes of L. amazonensis were concurrently evaluated. For the most promising EOs, their antileishmanial activities against parasites infecting peritoneal macrophages of BALB/c mice were measured. The most interesting antifungal candidates were the EOs from Cymbopogon citratus, Otacanthus azureus and Protium heptaphyllum, whereas O. azureus, Piper hispidum and P. heptaphyllum EOs exhibited the lowest 50% inhibitory concentration (IC50) values against axenic amastigotes, thus revealing a certain correspondence between both activities. The P. hispidum EO was identified as the most promising product in the results from the infected macrophages model (IC50: 4.7 µg/mL, safety index: 8). The most abundant compounds found in this EO were sesquiterpenes, notably curzerene and furanodiene. Eventually, the evaluation of the antidermatophytic activity of EOs appears to be an efficient method for identifying new potential drugs for the treatment of L. amazonensis.