8 resultados para Laser Surface Modification
em Scielo Saúde Pública - SP
Resumo:
The most relevant advances on the analytical applications of chemically modified electrodes (CME) are presented. CME have received great attention due to the possibility of electrode surface modification including chemisorption, composite generation and polymer coating. In recent years, the interest in CME has increased overall to improve the sensitivity and selectivity of the electroanalytical probes, considering the electron mediator incorporation and the new conducting polymers development. The general procedures employed for the electrode modification and the operational characteristics of some electrochemical sensors are discussed.
Resumo:
Associating the well known advantages of hybrid materials to the wide potential of nanomaterials, the new and featuring class of polymer nanocomposites turned into one of the most intensively researched areas. This review highlights recent developments in the field of the synthesis of polymer based nanocomposites. Important issues related to the surface modification of fillers, in order to promote the compatibility between the inorganic/organic components, are also reported. The enhancement of the physical properties and the potential applications of polymer nanocomposites are considered in typical examples, given for each synthetic method described.
Resumo:
The osseointegrated titanium implants are reliable and safe alternatives to treatments for long periods of time. For surface modification, thermal aspersion of TiO2 was used. The samples with and without TiO2 were treated with NaOH and SBF in order to obtain a layer of HA. Characterization was done by SEM and FTIR. The images of HA obtained by SEM show a uniform morphology and a porous structure with spherical particles. The IR spectra show that the surface of Ticp/ TiO2 is more favorable for the HA deposit, as can be seen by the increase of the crystalline structure and the very intense and defined bands of the OH group of HA that is verified about 3571 and 630 cm-1. Thus the Ticp/ TiO2 surface presents a satisfactory nucleation of HA when compared to Ticp.
Resumo:
Ion exchange method was employed by means of surface modification of the glass powders of LZSA (Li2O-ZrO2-SiO2-Al2O3) system submitted to a 70wt% NaNO3/30wt% NaSO4 bath salt followed by a heat treatment. Chemical analysis by X-ray fluorescence was used to evaluate the efficiency of ion exchange, while optical dilatometry was employed to evaluate sintering of compacts. Evaluation of the structure of sintered bodies was made by scanning electron microscopy. Substitution of Li+ ions by Na+ ions on the surface of powders during heat treatments of 450 and 600 ºC for 2-10 h promoted an increase in densification of the sintered bodies.
Resumo:
In recent years there has been great progress in the field of nanotechnology largely driven by research into nanomaterials. Chemistry appears in this context for its relevant role in the synthesis and surface modification of nanomaterials. This review article discusses fundamental concepts related to the synthesis and properties of inorganic nanoparticles with diverse properties. Aspects related to unique size dependent optical and magnetic properties are discussed and the chemistry involved in the preparation of nanomaterials reviewed. Fundamental aspects of the chemical modification of nanoparticles envisaging potential applications for these materials are also addressed.
Resumo:
Enzyme-support strategies are increasingly replacing conventional chemical methods in both laboratories and industries with attributes including efficiency, higher performance and multifarious use, where silica surfaces show potential due to the chemical bonds based on the presence of hydroxyl groups which can be modified with different additives. Surface-modified silica is a novel class of materials capable of improving enzyme stability and reusability that can be applied to support several immobilization techniques. This review describes the use of innovative modified supports to improve the state of enzyme immobilization and provide the industrial sector with new perspectives.
Resumo:
Malnutrition hampers the course of schistosomiasis mansoni infection just as normal growth of adult worms. A comparative morphometric study on adult specimens (male and female) recovered from undernourished (fed with a low protein diet - regional basic diet) and nourished (rodent commercial laboratory food, NUVILAB) white mice was performed. Tomographic images and morphometric analysis of the oral and ventral suckers, reproductive system and tegument were obtained by means of confocal laser scanning microscopy. Undernourished male specimens presented smaller morphometric values (length and width) of the reproductive system (first, third and last testicular lobes) and thickness of the tegument than controls. Besides that, it was demonstrated that the dorsal surface of the male worms bears large tubercles unevenly distributed, but kept grouped and flat. At the subtegumental region, vacuolated areas were detected. It was concluded that the inadequate nutritional status of the vertebrate host has a negative influence mainly in the reproductive system and topographical somatic development of male adult Schistosoma mansoni, inducing some alterations on the structure of the parasite.
Resumo:
Trypanosoma cruzi has a particular cytoskeleton that consists of a subpellicular network of microtubules and actin microfilaments. Therefore, it is an excellent target for the development of new anti-parasitic drugs. Benzimidazole 2-carbamates, a class of well-known broad-spectrum anthelmintics, have been shown to inhibit the in vitro growth of many protozoa. Therefore, to find efficient anti-trypanosomal (trypanocidal) drugs, our group has designed and synthesised several benzimidazole derivatives. One, named JVG9 (5-chloro-1H-benzimidazole-2-thiol), has been found to be effective against T. cruzi bloodstream trypomastigotes under both in vitro and in vivo conditions. Here, we present the in vitro effects observed by laser scanning confocal and scanning electron microscopy on T. cruzi trypomastigotes. Changes in the surface and the distribution of the cytoskeletal proteins are consistent with the hypothesis that the trypanocidal activity of JVG9 involves the cytoskeleton as a target.