15 resultados para Large-scale experiments
em Scielo Saúde Pública - SP
Resumo:
Malaria diagnoses has traditionally been made using thick blood smears, but more sensitive and faster techniques are required to process large numbers of samples in clinical and epidemiological studies and in blood donor screening. Here, we evaluated molecular and serological tools to build a screening platform for pooled samples aimed at reducing both the time and the cost of these diagnoses. Positive and negative samples were analysed in individual and pooled experiments using real-time polymerase chain reaction (PCR), nested PCR and an immunochromatographic test. For the individual tests, 46/49 samples were positive by real-time PCR, 46/49 were positive by nested PCR and 32/46 were positive by immunochromatographic test. For the assays performed using pooled samples, 13/15 samples were positive by real-time PCR and nested PCR and 11/15 were positive by immunochromatographic test. These molecular methods demonstrated sensitivity and specificity for both the individual and pooled samples. Due to the advantages of the real-time PCR, such as the fast processing and the closed system, this method should be indicated as the first choice for use in large-scale diagnosis and the nested PCR should be used for species differentiation. However, additional field isolates should be tested to confirm the results achieved using cultured parasites and the serological test should only be adopted as a complementary method for malaria diagnosis.
Resumo:
INTRODUCTION: Although urine is considered the gold-standard material for the detection of congenital cytomegalovirus (CMV) infection, it can be difficult to obtain in newborns. The aim of this study was to compare the efficiency of detection of congenital CMV infection in saliva and urine samples. METHODS: One thousand newborns were included in the study. Congenital cytomegalovirus deoxyribonucleic acid (DNA) was detected by polymerase chain reaction (PCR). RESULTS: Saliva samples were obtained from all the newborns, whereas urine collection was successful in only 333 cases. There was no statistically significant difference between the use of saliva alone or saliva and urine collected simultaneously for the detection of CMV infection. CONCLUSIONS: Saliva samples can be used in large-scale neonatal screening for CMV infection.
Resumo:
Abstract: INTRODUCTION Risk of schistosomiasis expansion to semi-arid northeastern Brazil under the influence of the Integration Project of the São Francisco River (IPSFR) was assessed. METHODS: Stool examinations of schoolchildren, epidemiological investigation, and survey of the local host snail Biomphalaria straminea were performed in five IPSFR municipalities. RESULTS Six of 4,770 examined schoolchildren were egg-positive for Schistosoma mansoni. Biomphalaria straminea was widespread, but not naturally infected with S. mansoni. Snails experimentally exposed to two laboratory S. mansoni strains yielded infection indices of 1-4.5%. CONCLUSIONS: There is evidence of active schistosomiasis transmission in the area; thus, intensive surveillance actions are required.
Resumo:
A large-scale inventory of trees > 10cm DBH was conducted in the upland "terra firme" rain forest of the Distrito Agropecuário da SUFRAMA (Manaus Free Zone Authority Agricultural District) approximately 65Km north of the city of Manaus (AM), Srasil. Thegeneral appearance and structure of the forest is described together with local topography and soil texture. Thepreliminary results of the Inventory provide a minimum estimate of 698 tree species in 53 families in the 40Km radius sampled, including 17 undescribed species. Themost numerically abundant families, Lecythidaceae, Leguminosae, 5apotaceae and Burseraceae as also among the most species rich families. One aspect of this diverse assemblage is the proliferation of species within certain genera, Including 26 genera In 17 families with 6 or more species or morphospecies. Most species have very low abundances of less than 1 tree per hectare. While more abundant species do exist at densities ranging up to a mean of 12 trees per ha, many have clumped distributions leading to great variation in local species abundance. The degree of similarity between hectare samples based int the Coefficient of Community similarity Index varies widely over different sample hectares for five ecologically different families. Soil texture apparently plays a significant role In determining species composition in the different one hectare plots examined while results for other variable were less consistent. Greater differences in similarity indices are found for comparisons with a one hectare sample within the same formation approximately 40Km to the south. It is concluded that homogeneity of tree community composition within this single large and diverse yet continuous upland forest formation can not be assumed.
Resumo:
We analysed the spatial variation in morphological diversity (MDiv) and species richness (SR) for 91 species of Neotropical Triatominae to determine the ecological relationships between SR and MDiv and to explore the roles that climate, productivity, environmental heterogeneity and the presence of biomes and rivers may play in the structuring of species assemblages. For each 110 km x 110 km-cell on a grid map of America, we determined the number of species (SR) and estimated the mean Gower index (MDiv) based on 12 morphological attributes. We performed bootstrapping analyses of species assemblages to identify whether those assemblages were more similar or dissimilar in their morphology than expected by chance. We applied a multi-model selection procedure and spatial explicit analyses to account for the association of diversity-environment relationships. MDiv and SR both showed a latitudinal gradient, although each peaked at different locations and were thus not strictly spatially congruent. SR decreased with temperature variability and MDiv increased with mean temperature, suggesting a predominant role for ambient energy in determining Triatominae diversity. Species that were more similar than expected by chance co-occurred near the limits of the Triatominae distribution in association with changes in environmental variables. Environmental filtering may underlie the structuring of species assemblages near their distributional limits.
Resumo:
The objective of this work was to evaluate the large-scale propagation of grapevine genotypes after short-term storage in vitro. Microshoots from ten grapevine genotypes were used. The following storage temperatures were evaluated: 10, 20, and 25°C. After short-term storage, the shoots were propagated in up to five successive subcultures, to assess the large-scale propagation of the germplasm maintained under conditions of minimal growth. The propagated shoots were rooted in different concentrations of indolbutiric acid (IBA) and acclimatized in greenhouse. The best temperature for short-term storage in vitro and survival of the genotypes was 20°C. In the propagation phase, the highest number of shoots per explant was found in the subcultures 4 and 5, with averages of 4.9 and 4.8 shoots per explant, respectively. In the rooting phase, the best results for number of roots were obtained using a culture medium supplemented with 0.4 µmol L-1 of IBA, with an average of three roots per shoot. During the acclimation phase, a survival rate higher than 95% was achieved after 30 days in the greenhouse. Grapevine genotypes maintained for six months in vitro, at 20ºC, can be micropropagated in large scale.
Resumo:
A simple and inexpensive shaker/Erlenmeyer flask system for large-scale cultivation of insect cells is described and compared to a commercial spinner system. On the basis of maximum cell density, average population doubling time and overproduction of recombinant protein, a better result was obtained with a simpler and less expensive bioreactor consisting of Erlenmeyer flasks and an ordinary shaker waterbath. Routinely, about 90 mg of pure poly(ADP-ribose) polymerase catalytic domain was obtained for a total of 3 x 109 infected cells in three liters of culture
Resumo:
The main object of the present paper consists in giving formulas and methods which enable us to determine the minimum number of repetitions or of individuals necessary to garantee some extent the success of an experiment. The theoretical basis of all processes consists essentially in the following. Knowing the frequency of the desired p and of the non desired ovents q we may calculate the frequency of all possi- ble combinations, to be expected in n repetitions, by expanding the binomium (p-+q)n. Determining which of these combinations we want to avoid we calculate their total frequency, selecting the value of the exponent n of the binomium in such a way that this total frequency is equal or smaller than the accepted limit of precision n/pª{ 1/n1 (q/p)n + 1/(n-1)| (q/p)n-1 + 1/ 2!(n-2)| (q/p)n-2 + 1/3(n-3) (q/p)n-3... < Plim - -(1b) There does not exist an absolute limit of precision since its value depends not only upon psychological factors in our judgement, but is at the same sime a function of the number of repetitions For this reasen y have proposed (1,56) two relative values, one equal to 1-5n as the lowest value of probability and the other equal to 1-10n as the highest value of improbability, leaving between them what may be called the "region of doubt However these formulas cannot be applied in our case since this number n is just the unknown quantity. Thus we have to use, instead of the more exact values of these two formulas, the conventional limits of P.lim equal to 0,05 (Precision 5%), equal to 0,01 (Precision 1%, and to 0,001 (Precision P, 1%). The binominal formula as explained above (cf. formula 1, pg. 85), however is of rather limited applicability owing to the excessive calculus necessary, and we have thus to procure approximations as substitutes. We may use, without loss of precision, the following approximations: a) The normal or Gaussean distribution when the expected frequency p has any value between 0,1 and 0,9, and when n is at least superior to ten. b) The Poisson distribution when the expected frequecy p is smaller than 0,1. Tables V to VII show for some special cases that these approximations are very satisfactory. The praticai solution of the following problems, stated in the introduction can now be given: A) What is the minimum number of repititions necessary in order to avoid that any one of a treatments, varieties etc. may be accidentally always the best, on the best and second best, or the first, second, and third best or finally one of the n beat treatments, varieties etc. Using the first term of the binomium, we have the following equation for n: n = log Riim / log (m:) = log Riim / log.m - log a --------------(5) B) What is the minimun number of individuals necessary in 01der that a ceratin type, expected with the frequency p, may appaer at least in one, two, three or a=m+1 individuals. 1) For p between 0,1 and 0,9 and using the Gaussean approximation we have: on - ó. p (1-p) n - a -1.m b= δ. 1-p /p e c = m/p } -------------------(7) n = b + b² + 4 c/ 2 n´ = 1/p n cor = n + n' ---------- (8) We have to use the correction n' when p has a value between 0,25 and 0,75. The greek letters delta represents in the present esse the unilateral limits of the Gaussean distribution for the three conventional limits of precision : 1,64; 2,33; and 3,09 respectively. h we are only interested in having at least one individual, and m becomes equal to zero, the formula reduces to : c= m/p o para a = 1 a = { b + b²}² = b² = δ2 1- p /p }-----------------(9) n = 1/p n (cor) = n + n´ 2) If p is smaller than 0,1 we may use table 1 in order to find the mean m of a Poisson distribution and determine. n = m: p C) Which is the minimun number of individuals necessary for distinguishing two frequencies p1 and p2? 1) When pl and p2 are values between 0,1 and 0,9 we have: n = { δ p1 ( 1-pi) + p2) / p2 (1 - p2) n= 1/p1-p2 }------------ (13) n (cor) We have again to use the unilateral limits of the Gaussean distribution. The correction n' should be used if at least one of the valors pl or p2 has a value between 0,25 and 0,75. A more complicated formula may be used in cases where whe want to increase the precision : n (p1 - p2) δ { p1 (1- p2 ) / n= m δ = δ p1 ( 1 - p1) + p2 ( 1 - p2) c= m / p1 - p2 n = { b2 + 4 4 c }2 }--------- (14) n = 1/ p1 - p2 2) When both pl and p2 are smaller than 0,1 we determine the quocient (pl-r-p2) and procure the corresponding number m2 of a Poisson distribution in table 2. The value n is found by the equation : n = mg /p2 ------------- (15) D) What is the minimun number necessary for distinguishing three or more frequencies, p2 p1 p3. If the frequecies pl p2 p3 are values between 0,1 e 0,9 we have to solve the individual equations and sue the higest value of n thus determined : n 1.2 = {δ p1 (1 - p1) / p1 - p2 }² = Fiim n 1.2 = { δ p1 ( 1 - p1) + p1 ( 1 - p1) }² } -- (16) Delta represents now the bilateral limits of the : Gaussean distrioution : 1,96-2,58-3,29. 2) No table was prepared for the relatively rare cases of a comparison of threes or more frequencies below 0,1 and in such cases extremely high numbers would be required. E) A process is given which serves to solve two problemr of informatory nature : a) if a special type appears in n individuals with a frequency p(obs), what may be the corresponding ideal value of p(esp), or; b) if we study samples of n in diviuals and expect a certain type with a frequency p(esp) what may be the extreme limits of p(obs) in individual farmlies ? I.) If we are dealing with values between 0,1 and 0,9 we may use table 3. To solve the first question we select the respective horizontal line for p(obs) and determine which column corresponds to our value of n and find the respective value of p(esp) by interpolating between columns. In order to solve the second problem we start with the respective column for p(esp) and find the horizontal line for the given value of n either diretly or by approximation and by interpolation. 2) For frequencies smaller than 0,1 we have to use table 4 and transform the fractions p(esp) and p(obs) in numbers of Poisson series by multiplication with n. Tn order to solve the first broblem, we verify in which line the lower Poisson limit is equal to m(obs) and transform the corresponding value of m into frequecy p(esp) by dividing through n. The observed frequency may thus be a chance deviate of any value between 0,0... and the values given by dividing the value of m in the table by n. In the second case we transform first the expectation p(esp) into a value of m and procure in the horizontal line, corresponding to m(esp) the extreme values om m which than must be transformed, by dividing through n into values of p(obs). F) Partial and progressive tests may be recomended in all cases where there is lack of material or where the loss of time is less importent than the cost of large scale experiments since in many cases the minimun number necessary to garantee the results within the limits of precision is rather large. One should not forget that the minimun number really represents at the same time a maximun number, necessary only if one takes into consideration essentially the disfavorable variations, but smaller numbers may frequently already satisfactory results. For instance, by definition, we know that a frequecy of p means that we expect one individual in every total o(f1-p). If there were no chance variations, this number (1- p) will be suficient. and if there were favorable variations a smaller number still may yield one individual of the desired type. r.nus trusting to luck, one may start the experiment with numbers, smaller than the minimun calculated according to the formulas given above, and increase the total untill the desired result is obtained and this may well b ebefore the "minimum number" is reached. Some concrete examples of this partial or progressive procedure are given from our genetical experiments with maize.
Resumo:
The knowledge of the slug flow characteristics is very important when designing pipelines and process equipment. When the intermittences typical in slug flow occurs, the fluctuations of the flow variables bring additional concern to the designer. Focusing on this subject the present work discloses the experimental data on slug flow characteristics occurring in a large-size, large-scale facility. The results were compared with data provided by mechanistic slug flow models in order to verify their reliability when modelling actual flow conditions. Experiments were done with natural gas and oil or water as the liquid phase. To compute the frequency and velocity of the slug cell and to calculate the length of the elongated bubble and liquid slug one used two pressure transducers measuring the pressure drop across the pipe diameter at different axial locations. A third pressure transducer measured the pressure drop between two axial location 200 m apart. The experimental data were compared with results of Camargo's1 algorithm (1991, 1993), which uses the basics of Dukler & Hubbard's (1975) slug flow model, and those calculated by the transient two-phase flow simulator OLGA.
Resumo:
We investigate palm species distribution, richness and abundance along the Mokoti, a seasonally-dry river of southeastern Amazon and compare it to the patterns observed at a large scale, comprising the entire Brazilian territory. A total of 694 palms belonging to 10 species were sampled at the Mokoti River basin. Although the species showed diverse distribution patterns, we found that local palm abundance, richness and tree basal area were significantly higher from the hills to the bottomlands of the study region, revealing a positive association of these measures with moisture. The analyses at the larger spatial scale also showed a strong influence of vapor pressure (a measure of moisture content of the air, in turn modulated by temperature) and seasonality in temperature: the richest regions were those where temperature and humidity were simultaneously high, and which also presented a lower degree of seasonality in temperature. These results indicate that the distribution of palms seems to be strongly associated with climatic variables, supporting the idea that, by 'putting all the eggs in one basket' (a consequence of survival depending on the preservation of a single irreplaceable bud), palms have become vulnerable to extreme environmental conditions. Hence, their distribution is concentrated in those tropical and sub-tropical regions with constant conditions of (mild to high) temperature and moisture all year round.
Resumo:
Attempts to control schistosomiasis have hitherto involved the use of one or more of the following methods, either in isolation or in combination: (1) control of the intermediate host using molluscicides or biological methods; (2) basic sanitation and clean water supply; (3) health education; (4) individual or mass treatment; (5) protection of individuals in such a way as to prevent cercariae from penetrating the skin; (6) vaccine-based strategies against schistosomiasis. None of these methods is capable, on its own, of bringing about effective control of schistosomiasis, except in populations of a very limited size or under very special conditions. Molluscicides, besides expensive and toxic, have only a temporary effect. As for biological control, there is no effective method yet. Basic sanitation and clean water supply combined with health education potentially constitute the most effective approach, but only in the mid-to-long term. Mass treatment reduces morbidity, but does not control transmission. Protection of individuals has proved to be impracticable on a large scale. Vaccine-based strategies against schistosomiasis are still in the experimental stage. Experiments carried out in Brazil in the last 20 years have shown that mass treatment with single doses of oxamniquine or praziquantel can rapidly reduce levels of Shistosoma mansoni infection and morbidity in endemic areas. They have also shown that subsequent transmission and reinfection frequently occur in defined foci or "clusters", due to human contact with water, and in inverse proportion to the number and frequency of treatments carried out. On the basis of these experiments, the author suggests a multidisciplinary strategy for schistosomiasis control.
Resumo:
The undisputed, worldwide success of chemotherapy notwithstanding, schistosomiasis continues to defy control efforts in as much rapid reinfection demands repeated treatment, sometimes as often as once a year. There is thus a need for a complementary tool with effect for the longer term, notably a vaccine. International efforts in this direction have been ongoing for several decades but, until the recombinant DNA techniques were introduced, antigen production remained an unsurmountable bottleneck. Although animal experiments have been highly productive and are still much needed, they probably do not reflect the human situation adequately and real progress can not be expected until more is known about human immune responses to schistosome infection. It is well-known that irradiated cercariae consistently produce high levels of protection in experimental animals but, for various reasons, this proof of principle cannot be directly exploited. Research has instead been focussed on the identification and testing of specific schistosome antigens. This work has been quite successful and is already at the stage where clinical trials are called for. Preliminary results from coordinated in vitro laboratory and field epidemiological studies regarding the protective potential of several antigens support the initiation of such trials. A series of meetings, organized earlier this year in Cairo, Egypt, reviewed recent progress, selecteded suitable vaccine candidates and made firm recommendations for future action including pledging support for large-scale production according to good manufacturing practice (GMP) and Phase I trials. Scientists at the American Centers for Disease Control and Prevention (CDC) have drawn up a detailed research plan. The major financial support will come from USAID, Cairo, which has established a scientific advisory group of Egyptian scientists and representatives from current and previous international donors such as WHO, NIAID, the European Union and the Edna McConnell Clark Foundation.
Resumo:
Previous studies carried out with Sm14 in experimental vaccination against Schistosoma mansoni or Fasciola hepatica infections were performed with recombinant Sm14 (rSm14) produced in Escherichia coli by the pGEMEX system (Promega). The rSm14 was expressed as a 40 kDa fusion protein with the major bacteriophage T7 capsid protein. Vaccination experiments with this rSm14 in animal models resulted in consistent high protective activity against S. mansoni cercariae challenge and enabled rSm14 to be included among the vaccine antigens endorsed by the World Health Organization for phase I/II clinical trials. Since the preparation of pGEMEX based rSm14 is time consuming and results in low yield for large scale production, we have tested other E. coli expression systems which would be more suitable for scale up and downstream processing. We expressed two different 6XHis-tagged Sm14 fusion proteins in a T7 promoter based plasmids. The 6XHis-tag fusions allowed rapid purification of the recombinant proteins through a Ni+2-charged resin. The resulted recombinant 18 and 16 kDa proteins were recognized by anti-Sm14 antibodies and also by antiserum against adult S. mansoni soluble secreted/excreted proteins in Western-Blot. Both proteins were also protective against S. mansoni cercariae infection to the same extent as the rSm14 expressed by the pGEMEX system.
Resumo:
Polistine wasps are important in Neotropical ecosystems due to their ubiquity and diversity. Inventories have not adequately considered spatial attributes of collected specimens. Spatial data on biodiversity are important for study and mitigation of anthropogenic impacts over natural ecosystems and for protecting species. We described and analyzed local-scale spatial patterns of collecting records of wasp species, as well as spatial variation of diversity descriptors in a 2500-hectare area of an Amazon forest in Brazil. Rare species comprised the largest fraction of the fauna. Close range spatial effects were detected for most of the more common species, with clustering of presence-data at short distances. Larger spatial lag effects could also be identified in some species, constituting probably cases of exogenous autocorrelation and candidates for explanations based on environmental factors. In a few cases, significant or near significant correlations were found between five species (of Agelaia, Angiopolybia, and Mischocyttarus) and three studied environmental variables: distance to nearest stream, terrain altitude, and the type of forest canopy. However, association between these factors and biodiversity variables were generally low. When used as predictors of polistine richness in a linear multiple regression, only the coefficient for the forest canopy variable resulted significant. Some level of prediction of wasp diversity variables can be attained based on environmental variables, especially vegetation structure. Large-scale landscape and regional studies should be scheduled to address this issue.
Resumo:
A parallel pseudo-spectral method for the simulation in distributed memory computers of the shallow-water equations in primitive form was developed and used on the study of turbulent shallow-waters LES models for orographic subgrid-scale perturbations. The main characteristics of the code are: momentum equations integrated in time using an accurate pseudo-spectral technique; Eulerian treatment of advective terms; and parallelization of the code based on a domain decomposition technique. The parallel pseudo-spectral code is efficient on various architectures. It gives high performance onvector computers and good speedup on distributed memory systems. The code is being used for the study of the interaction mechanisms in shallow-water ows with regular as well as random orography with a prescribed spectrum of elevations. Simulations show the evolution of small scale vortical motions from the interaction of the large scale flow and the small-scale orographic perturbations. These interactions transfer energy from the large-scale motions to the small (usually unresolved) scales. The possibility of including the parametrization of this effects in turbulent LES subgrid-stress models for the shallow-water equations is addressed.