104 resultados para Landsat satellites

em Scielo Saúde Pública - SP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

O mapeamento do uso da terra é fundamental para o entendimento dos processos de mudanças globais, especialmente em regiões como a Amazônia que estão sofrendo grande pressão de desenvolvimento. Tradicionalmente estes mapeamentos têm sido feitos utilizando técnicas de interpretação visual de imagens de satélites, que, embora de resultados satisfatórios, demandam muito tempo e alto custo. Neste trabalho é proposta uma técnica de segmentação da imagens com base em um algoritmo de crescimento de regiões, seguida de uma classificação não-supervisionada por regiões. Desta forma, a classificação temática se refere a um conjunto de elementos (pixels da imagem), beneficiando-se portanto da informação contextual e minimizando as limitações das técnicas de processamento digital baseadas em análise pontual (pixel-a-pixel). Esta técnica foi avaliada numa área típica da Amazônia, situada ao norte de Manaus, AM, utilizando imagens do sensor "Thematic Mapper" - TM do satélite Landsat, tanto na sua forma original quanto decomposta em elementos puros como vegetação verde, vegetação seca (madeira), sombra e solo, aqui denominada imagem misturas. Os resultados foram validados por um mapa de referência gerado a partir de técnicas consagradas de interpretação visual, com verificação de campo, e indicaram que a classificação automática é viável para o mapeamento de uso da terra na Amazônia. Testes estatísticos indicaram que houve concordância significativa entre as classificações automáticas digitais e o mapa de referência (em tomo de 95% de confiança).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este estudo apresenta um mapa da cobertura vegetal da planície de inundação do Rio Amazonas entre as cidades de Parintins (AM) e Almeirim (PA), com base em imagens Landsat-MSS adquiridas entre 1975 e 1981. O processamento digital dessas imagens envolveu a transformação para imagens-fração de vegetação, solo e água escura (sombra), seguido da aplicação de técnicas de segmentação e classificação por região. O mapa resultante da classificação foi organizado em quatro classes de cobertura do solo: floresta de várzea, vegetação não-florestal de várzea, solo exposto e água aberta. A precisão do mapa foi estimada a partir de dois tipos de informações coletadas em campo: 1) pontos de descrição: para validação das classes de cobertura não sujeitas a grandes alterações, como é o caso dos corpos d'água permanentes, e identificação de indicadores dos tipos de cobertura original presentes na paisagem na ocasião da obtenção das imagens (72 pontos); 2) entrevistas com moradores antigos para a recuperação da memória sobre a cobertura vegetal existente há 30 anos (44 questionários). Ao todo foram coletadas informações em 116 pontos distribuídos ao longo da área de estudo. Esses pontos foram utilizados para calcular o Índice Kappa de concordância entre os dados de campo e o mapa resultante da classificação automática, cujo valor (0,78) indica a boa qualidade do mapa de cobertura vegetal da várzea. Os resultados mostram que a região possuía uma cobertura florestal de várzea de aproximadamente 8.650 km2 no período de aquisição das imagens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

É feita a análise de áreas com diferentes classes de declividade (A = 0-3%, B = 3-8%, C = 8-16% e D = 16-30%) sscom a fina1idade de se verificar a potencialidade de imagens TM/LANDSAT, na escala 1:100.000, para planejamento agrícola. Devido à ausência de visão tridimensional, o trabalho baseia-se nas relações quantitativas entre índices dedrenagem (freqüência de rios e densidade de drenagem) determinados a partir das imagens, e expressão do relevo (declividade média) extraída de cartas planialtimétricas, na escala 1:50.000. Fotografias aéreas na escala 1:35.000 são utilizadas para fins comparativos. Conclui-se que o uso dessas imagens para mapear classes de declividade através do padrão de drenagem é viável, embora as características regionais o tenham limitado para diferenciar mais facilmente áreas com declividades A e B de áreas com declividades C e D.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A definição da resposta espectral da cultura do café é uma das etapas na identificação de lavouras cafeeiras em imagens de satélites de sensoriamento remoto, para fins de mapeamento e estimativa de área plantada. O objetivo deste trabalho foi avaliar o potencial das imagens adquiridas pelos satélites da série Landsat, no mapeamento da cultura do café para a previsão de safras. Foi feita uma análise temporal do comportamento espectral de lavouras de café-formação e café-produção por meio de imagens livres de nuvens adquiridas nos anos de 1999 e 2001. Também foi analisado o comportamento espectral das classes pastagem e mata, que compõem os alvos de maior ocupação na área de estudo. As imagens do período seco foram mais eficientes no mapeamento de lavouras de café-formação e café-produção. As imagens da banda 4 dos dois sensores apresentaram melhor diferenciação espectral entre café e os demais alvos da cena. A reflectância do café-produção apresentou grande variabilidade entre lavouras, que pode ser atribuída à idade, espaçamento de plantas, cultivar, indicando a necessidade de trabalho em campo para a correta identificação das lavouras de café nas imagens Landsat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar o impacto do aumento da resolução espacial e radiométrica da imagem pancromática do Ikonos-II na identificação de plantios de café (Coffea arabica), em comparação com as imagens do Landsat/ETM+. A área de estudo está localizada no Município de Pedregulho, SP, onde foram selecionados 50 talhões com plantios de café, e foram levantados dados referentes à altura, idade, espaçamento e variedade de cada talhão. As imagens permitiram a identificação de talhões com características diferentes em campo, tendo-se destacado a imagem do Ikonos-II, que apresentou melhor desempenho. Para os talhões com características iguais em campo, as imagens analisadas não se mostraram eficientes, independentemente do satélite utilizado. As correções atmosféricas e radiométricas, na imagem do Ikonos-II, não proporcionaram ganho efetivo nas análises realizadas. A maioria dos talhões identificados na imagem do Ikonos-II pode ser localizada na imagem do Landsat/ETM+ (68%). A correlação significativa entre a banda 4 do Landsat/ETM+ e o canal pancromático do Ikonos-II indica uma forma de ligação entre as imagens dos dois satélites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar a viabilidade do uso de imagens do Landsat, para o mapeamento da área cultivada com soja, nas safras de 2000/2001 a 2006/2007, no Estado do Paraná. A análise dos "quick looks" das imagens dos sensores TM e ETM+ foi feita para selecionar as imagens úteis para o mapeamento da cultura da soja. Os "quick looks" foram classificados de acordo com a presença ou a ausência de nuvens e de problemas técnicos. Conforme os resultados, em nenhum dos sete anos teria sido possível mapear a área cultivada com soja, em todo o Estado, mesmo nos três anos-safra em que os satélites Landsat 5 e 7 operaram em conjunto. A presença de nuvens, detectada pelos sensores ópticos, deve ser levada em conta no mapeamento sistemático da área cultivada com culturas de verão, no Brasil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to evaluate the seasonal variation of soil cover and rainfall erosivity, and their influences on the revised universal soil loss equation (Rusle), in order to estimate watershed soil losses in a temporal scale. Twenty-two TM Landsat 5 images from 1986 to 2009 were used to estimate soil use and management factor (C factor). A corresponding rainfall erosivity factor (R factor) was considered for each image, and the other factors were obtained using the standard Rusle method. Estimated soil losses were grouped into classes and ranged from 0.13 Mg ha-1 on May 24, 2009 (dry season) to 62.0 Mg ha-1 on March 11, 2007 (rainy season). In these dates, maximum losses in the watershed were 2.2 and 781.5 Mg ha-1 , respectively. Mean annual soil loss in the watershed was 109.5 Mg ha-1 , but the central area, with a loss of nearly 300.0 Mg ha-1 , was characterized as a site of high water-erosion risk. The use of C factor obtained from remote sensing data, associated to corresponding R factor, was fundamental to evaluate the soil erosion estimated by the Rusle in different seasons, unlike of other studies which keep these factors constant throughout time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O objetivo deste trabalho foi ajustar modelos para estimar características dendrométricas da Caatinga brasileira a partir de dados do sensor TM do Landsat 5. Medidas de diâmetro e altura das árvores foram obtidas de 60 parcelas de inventário (400 m2), em dois municípios do Estado de Sergipe. A área basal e o volume de madeira foram estimados com uso de equação alométrica e de fator de forma (f = 0,9). As variáveis explicativas foram obtidas do sensor TM, após correção radiométrica e geométrica, tendo-se considerado, na análise, seis bandas espectrais, com resolução espacial de 30 m, além dos índices de razão simples (SR), de vegetação por diferença normalizada (NDVI) e de vegetação ajustado ao solo (Savi). Na escolha das melhores variáveis explicativas, foram considerados coeficiente de determinação (R2), raiz do erro quadrático médio (RMSE) e critério bayesiano de informação (CBI). A área basal por hectare não apresentou correlação significativa com nenhuma das variáveis explicativas utilizadas. Os melhores modelos foram ajustados à altura média das árvores por parcela (R2 = 0,4; RMSE = 13%) e ao volume de madeira por hectare (R2 = 0,6; RMSE = 42%). As métricas derivadas do sensor TM do Landsat 5 têm grande potencial para explicar variações de altura média das árvores e do volume de madeira por hectare, em remanescentes de Caatinga situados no Nordeste brasileiro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumo: O objetivo deste trabalho foi avaliar o desempenho dos classificadores digitais SVM e K-NN para a classificação orientada a objeto em imagens Landsat-8, aplicados ao mapeamento de uso e cobertura do solo da Alta Bacia do Rio Piracicaba-Jaguari, MG. A etapa de pré-processamento contou com a conversão radiométrica e a minimização dos efeitos atmosféricos. Em seguida, foi feita a fusão das bandas multiespectrais (30 m) com a banda pancromática (15 m). Com base em composições RGB e inspeções de campo, definiram-se 15 classes de uso e cobertura do solo. Para a segmentação de bordas, aplicaram-se os limiares 10 e 60 para as configurações de segmentação e união no aplicativo ENVI. A classificação foi feita usando SVM e K-NN. Ambos os classificadores apresentaram elevados valores de índice Kappa (k): 0,92 para SVM e 0,86 para K-NN, significativamente diferentes entre si a 95% de probabilidade. Uma significativa melhoria foi observada para SVM, na classificação correta de diferentes tipologias florestais. A classificação orientada a objetos é amplamente aplicada em imagens de alta resolução espacial; no entanto, os resultados obtidos no presente trabalho mostram a robustez do método também para imagens de média resolução espacial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumo: O objetivo deste trabalho foi avaliar a utilização de imagens do sensor TM/Landsat 5 na diferenciação de plantios comerciais de Eucalyptus dunnii e Eucalyptus urograndis com diferentes idades. Demarcaram-se parcelas para identificar as duas espécies, em dois períodos distintos (2009 e 2011), a idades de 3 e 5 anos, para E. dunnii, e 2,2 e 4,2 anos para E. urograndis. Avaliaram-se seis bandas do sensor TM/Landsat 5 (B1, B2, B3, B4, B5 e B7) e seis índices de vegetação: razão simples (SR); índice de vegetação por diferença normalizada (NDVI); índice de vegetação ajustado ao solo (Savi)-0,25; Savi-0,5; índice de vegetação por diferença normalizada com uso da banda verde (GNDVI); e índice de umidade na vegetação (MVI). O processamento digital das imagens consistiu de correção geométrica, radiométrica e atmosférica. Os plantios de E. dunnii e E. urograndis foram diferenciados por meio de cinco bandas do Landsat (B2, B3, B4, B5 e B7) e três índices de vegetação (Savi-0,5, Savi-0,25 e GNDVI), no ano de 2009, e por quatro bandas do Landsat (B2, B4, B5 e B7) e seis índices de vegetação (NDVI, SR, Savi-0,5, Savi-0,25, MVI e GNDVI) no ano de 2011. Os dados espectrais extraídos das imagens TM/Landsat 5 são eficazes, tanto para distinguir as espécies de eucalipto como também a mesma espécie em plantios equiâneos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho aborda o levantamento da cobertura florestal natural da microrregião de Viçosa, MG, realizado em 1998, utilizando-se imagens do Landsat 5. Verificou-se que: a) a cobertura florestal natural abrange 57.310 ha (24,27% da área total), dos quais 24.184,80 ha (10,24%) correspondem a mata e 33.125,31 (14,03%) a capoeira; b) os municípios que possuem cobertura florestal natural abaixo de 20% são Cajuri, Coimbra, Canaã e São Miguel do Anta e os acima de 20%, Pedra do Anta, Ervália, Viçosa, Paula Cândido, Teixeiras, Porto Firme e Araponga; c) Cajuri é o município com a menor taxa de crescimento florestal e Araponga, com a maior; d) Araponga é o município com a maior área florestal e Coimbra, com a menor; e e) a área de cobertura florestal natural teve incremento de 13,60%, de 1994 a 1998.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O objetivo deste estudo foi fazer uma análise da dinâmica da cobertura vegetal de Curitiba, PR, por meio da manipulação de imagens Landsat TM. Para isso, foram utilizadas duas imagens Landsat TM, sendo uma de 2004 e outra de 1986, que foram georreferenciadas, classificadas e processadas, a fim de se obter o mapa de cobertura vegetal das duas datas. Foram analisados aspectos quantitativos, bem como a distribuição da cobertura vegetal pelas regionais administrativas da cidade nas duas datas. A cobertura vegetal diminuiu em todas as regionais, como resultado do crescimento urbano, principalmente nas áreas de menor densidade urbana e maior quantidade de cobertura vegetal. Dessa forma, a urbanização expandiu-se para além das áreas de ocupação tradicionais. A regional que apresentou maior diminuição de cobertura vegetal foi a Pinheirinho e a que teve menor diminuição, a Matriz. Foi possível identificar maior carência de cobertura vegetal justamente nas áreas onde a ocupação urbana se faz mais presente. Tal informação pode ser útil ao planejamento de áreas verdes ou à arborização urbana, contribuindo como subsídio para o direcionamento das ações a serem realizadas, ao indicar potencialidades, vocações, carências e necessidades das diversas regiões da cidade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variáveis climáticas são essenciais para a compreensão das condições ambientais que influenciam o crescimento e o desenvolvimento vegetal. Nos últimos anos, as pesquisas que utilizam dados climáticos e técnicas de sensoriamento remoto em análises espaço-temporais da demanda por água e energia das plantas têm-se intensificado. O SEBAL (Surface Energy Balance Algorithms for Land) é um dos algoritmos mais destacados em estudos que envolvem estimativas dos fluxos de energia em grandes áreas, e pode ser aplicado com poucas medições de campo. Este trabalho, realizado no Município de Santa Bárbara, Minas Gerais, objetivou estimar os componentes do balanço de energia e, por conseguinte, a evapotranspiração em plantios de eucalipto com aplicação do algoritmo SEBAL e de imagem do sensor TM do satélite Landsat 5. As estimativas foram realizadas para cena do dia 20/06/2003. Considerando apenas as áreas referentes aos plantios de eucalipto (sete anos de idade), foram obtidos valores médios de saldo de radiação (Rn), fluxo de calor no solo (G), fluxo de calor sensível (H), fluxo de calor latente (LE) de 420,12 W m-2, 81,80 W m-2, 149,93 W m-2, 188,39 W m-2, respectivamente. Para a evapotranspiração real horária (ETr h), o valor médio obtido foi de 0,28 mm h-1. As estimativas mostraram-se condizentes com dados da literatura, no entanto pesquisas com maior controle experimental devem ser realizadas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dados de sensoriamento remoto têm sido largamente utilizados para classificação da cobertura e uso da terra, em particular graças à aquisição periódica de imagens de satélite e à generalização dos sistemas de processamento digital de imagens, que oferecem uma variedade de algoritmos de classificação de imagens. Este trabalho teve por objetivo avaliar alguns dos métodos mais comuns de classificações supervisionadas e não supervisionadas para imagens do sensor TM do satélite Landsat-5, em três áreas com diferentes padrões de paisagem em Rondônia: (1) áreas de fazendas de "Médio porte", (2) assentamentos no padrão "Espinha de peixe" e (3) áreas de contato entre floresta e "Cerrado". A comparação com um mapa de referência baseado na estatística Kappa produziu indicadores de desempenho bons ou superiores (melhores resultados - K-médias: k = 0,68; k = 0,77; k = 0,64 e MaxVer: k = 0,71; k = 0,89; k = 0,70, respectivamente nas três áreas citadas), para os algoritmos utilizados. Os resultados indicaram que a escolha de um algoritmo deve considerar tanto a capacidade de discriminar várias assinaturas espectrais em diferentes padrões de paisagem quanto a relação custo/benefício decorrente das várias etapas do trabalho dos operadores que elaboram um mapa de cobertura e uso da terra. Este trabalho apontou a necessidade de esforço mais sistemático de avaliação prévia de várias opções de execução de um projeto específico antes de se iniciar o trabalho de elaboração de um mapa de cobertura e uso da terra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O índice de área foliar (IAF) é uma das mais importantes variáveis biofísicas da vegetação, estando relacionado diretamente com a evapotranspiração, com a produtividade da vegetação e com a interceptação da chuva pelo dossel. O objetivo deste trabalho foi analisar a relação do IAF de diversos tipos de cobertura do solo com Frações de Componentes Puros (FCPs) do Modelo Linear de Mistura Espectral (MLME). A área de estudo foi a microbacia hidrográfica do Ribeirão dos Marins, localizada no município de Piracicaba - SP. O IAF foi medido, no campo, com o equipamento LAI-2000, em 32 áreas com diferentes coberturas vegetais. A imagem utilizada foi do sensor ETM+ a bordo do satélite Landsat-7. No MLME, foram considerados três componentes puros (vegetação, solo e sombra), selecionados com o auxílio dos componentes principais. Como resultado, tem-se que o IAF variou de 0,47 a 4,48, quando consideradas todas as áreas. As relações do IAF com a fração do componente puro vegetação F VEG e com a fração do componente puro solo (F SOL) foram significativas, embora fracas. Ao considerar apenas dados de IAF de cana-de-açúcar, houve aumento da variação explicada tanto para F VEG como para F SOL, sugerindo que a estratificação da vegetação pelo tipo pode melhorar a estimativa do IAF.