29 resultados para Landfill biogas
em Scielo Saúde Pública - SP
Resumo:
Introduction To determine the faunal composition of immature culicids inhabiting a percolation tank in the landfill of Sapucaia, State of Rio de Janeiro, Brazil, immature mosquitoes were collected over a two-day period during the third weeks of April, August and October 2011. Results The species found were Culex usquatus, Lutzia bigoti, Anopheles argyritarsis and Limatus durhamii. This study is the first to report the colonization of eutrophic breeding sites by these species. Conclusions The oviposition behavior observed in this study suggests a secondary adaptation or change in habit to select eutrophic environments during the developmental stages of the observed species.
Resumo:
The present research was carried out at the DER/FCAV, São Paulo State University - Brazil, with the purpose of analyzing the quantity and quality of biogas produced by six types of substrates. The substrates used in the anaerobic digestion were characterized as: 1- Litter of broiler (LB); 2- Grinded broiler litter (GBL); 3- Broiler litter with wood shavings (BLWS); 4- Grinded broiler litter with wood shavings (GBLWS); 5- Broiler litter with peanut hulls (BLPH); 6- Grinded broiler litter with peanut hull (GBLPH). It was concluded from the collected data that: the (GBL) substrate showed a superior biogas accumulated production in relation to the other substrates, while the BLWS presented an inferior accumulated production; the grinded substrates showed higher quantities of accumulated biogas in relation to the non-grinded substrates, except for GBLPH, with 20.9 m³ inferior than BLPH; the period of maximum biogas production started from 45 to 60 days, declining after 120 days; at 57 days after filling up the digesters the biogas produced had levels of CH4 superior than 53%, and from 99 days all of them produced biogas with levels of CH4 superior than 70%; LB and GBL presented higher concentrations of CH4 in the biogas.
Resumo:
Physical and chemical characteristics of manure are modified by different animal production systems. In cattle feeding system for young bulls there is an inversion of the proportion between forage and concentrate. In other words, the animals receive a smaller amount of forage compared to the traditional system. These changes in the manure characteristics involve changes in the treatment systems. The aim of this study was to determine the potential production of biogas of batch digesters fed with manure from young bulls that received two diets containing different proportions between forage and concentrate, with or without inoculums and submitted to three levels of temperature (25, 35 and 40(0)C). The evaluated parameters were total solids (TS) and volatile solids (VS) reduction and biogas potentials production. The digesters fed with manure from animals that received the diet 2 (80%C + 20% R) showed the largest reductions of TS and VS. About the potentials of biogas production there was interaction between the factors diet and inoculums, but no effects of temperatures. The treatment content manure from animals fed with diet 2 without inoculums presented the greatest potential of biogas production per kg of TS added (0.2123 m³).
Resumo:
Sanitary landfill leachates present high concentrations of carbonaceous and nitrogenous materials. The crucial point is that carbonaceous materials are of difficult biodegradation, what compromises the performance of biological treatment processes, while nitrogenous materials, such as ammonia nitrogen, probably preclude the use of biological treatments. Therefore, the aim of this work was to study the desorption process of ammonia nitrogen from sanitary landfill leachate in filling towers. Desorption was carried out in filling towers of 35 L capacity. The leachate was collected from a sanitary landfill located in João Pessoa, Paraíba State, Brazil. Desorption efficiency for the pH values adopted in four treatments was 93% minimum and 95.5% maximum, with aeration mean time ranging from 3 to 6 hours. The limiting factors of ammonia nitrogen desorption from sanitary landfill leachates in filling towers are associated with the use of alkalizer species for pH correction, and electricity costs for aeration.
Resumo:
In this study, was studied the biogas generation from swine manure, using residual glycerine supplementation. The biogas production by digestion occurred in the anaerobic batch system under mesophilic conditions (35°C), with a hydraulic retention time of 48 days. The experiment was performed with 48 samples divided into four groups, from these, one was kept as a control (without glycerin) and the other three groups were respectively supplemented with residual glycerine in the percentage of 3%, 6% and 9% of the total volume of the samples. The volume of biogas was controlled by an automated system for reading in laboratory scale and the quality of the biogas (CH4) measured from a specific sensor. The results showed that the residual glycerine has high potential for biogas production, with increases of 124.95%, 156.98% and 197.83% in the groups 3%, 6% and 9%, respectively, relative to the sample control. However, very high organic loads can compromise the process of digestion affecting the quality of the biogas generated in relation to methane.
Resumo:
The objective of this study was to isolate and identify fungal species found in natural association with adults of Musca domestica. The adult insects were collected from two natural breeding grounds: hog pens and an urban sanitary landfill. The isolated fungi were identified as: Aspergillus flavus (23.8%), A. niger var. niger (14.4%), Penicillium corylophilum (21.4%), P. fellutanum (11.9%), Cladosporium cladosporoides (4.7%), Fusarium sp. (4.7%), Alternaria alternata (11.9%), Curvularia brachyspora (2.4%), Mycelia sterilia (2.4%) and the Mucorales order (2.4%).
Resumo:
Landfill gas emissions are one of the main sources of anthropogenic methane (CH4), a major greenhouse gas. In this paper, an economically attractive alternative to minimize greenhouse gas emissions from municipal solid waste landfills was sought. This alternative consists in special biofilters as landfill covers with oxidative capacity in the presence of CH4. To improve the quality/cost ratio of the project, compost was chosen as one of the cover substrates and soil (Typic red yellow-silt-clay Podzolic) as the other. The performance of four substrates was studied in laboratory experiments: municipal solid waste (MSW) compost, soil, and two soil-compost at different proportions. This study aimed to evaluate the suitability and environmental compatibility as a means of CH4 oxidation in biofilters. Four biofilters were constructed in 60 cm PVC tubes with an internal diameter of 10 cm. Each filter contained 2.3 L of oxidizing substrate at the beginning of the experiment. The gas used was a mixture of CH4 and air introduced at the bottom of each biofilter, at a flow of 150 mL min-1, by a flow meter. One hundred days after the beginning of the experiment, the best biofilter was the MSW compost with an oxidation rate of 990 g m-3 day-1 , corresponding to an efficiency of 44 %. It can be concluded that the four substrates studied have satisfactory oxidative capacity, and the substrates can be used advantageously as cover substrate of MSW landfills.
Resumo:
The main purpose of this work was the qualitative study of organic compounds in landfill leachate. The samples were collected from a sanitary landfill located at Gravataí, a southern Brazilian city, that receive both, industrial and domestic refuse. The samples were submitted to solid phase extraction (SPE) with XAD-4 resin as the stationary phase. The instrumental analysis was performed by Gas Chromatography with a Mass Spectrometry Detector (GC/MSD). The compounds achieved in the SPE extracts were tentatively identified by the GC/MS library. It was found several oxygen and nitrogen compounds like carboxylic acids, ketones, amines and amides. Sulfur compounds and phthalate esters are also identified.
Resumo:
Organic compounds responsible for the color of wastewaters are usually refractory to biological digestion. In this paper the photo-assisted electrolysis process is used for color removal from three of the most colored wastewaters, which are daily generated in large amounts: the E1 bleach Kraft mill effluent, a textile reactive dye effluent and a landfill leachate. Electrolysis was carried out at 26,5 mA cm-2 in a flow reactor in which the anode surface was illuminated by a 400 W high pressure Hg bulb. In all experiments 70-75% of color reduction was observed which was also followed by a net organic load oxidation.
Resumo:
The tanning process in the leather industry generates very high quantities of chromium-containing solid waste ("wet blue" leather). Environmental concerns and escalating landfill-costs are becoming increasingly serious problems for the leather industry and an alternative disposal is needed. In this work, we are presenting a novel application for this solid waste, which is the removal of organic contaminants from aqueous-solution. The adsorption isotherm of "wet blue" leather waste from the AUREA tanning company in Erechim-RS (Brazil) showed that this material presents high adsorption capacities of the reactive textile dyes.
Resumo:
In this work, a partial least squares regression routine was used to develop a multivariate calibration model to predict the chemical oxygen demand (COD) in substrates of environmental relevance (paper effluents and landfill leachates) from UV-Vis spectral data. The calibration models permit the fast determination of the COD with typical relative errors lower by 10% with respect to the conventional methodology.
Resumo:
The chemical and microbiological decomposition of the garbage deposited in landfills leads to the generation of a dark and malodorous liquid residue that shows a chemical composition of extreme variability and complexity. When matured, the leachates show low biodegradability, which makes it difficult to treat by conventional biological processes. In this work a new strategy for the treatment of landfill leachates is proposed, involving a preliminary treatment by heterogeneous photocatalysis followed by an activated sludge system. The results demonstrate that photochemical treatments of 60 and 90 min significantly enhance the leachates' biodegradability favoring subsequent biological treatment. The biodegradability rate (BOD/COD) was also greatly enhanced.
Resumo:
The large use of plastics has generated a waste deposit problem. Today plastic wastes represent 20% in volume of the total waste in the municipal landfills. To solve the disposal problem of plastics methods have been employed such as incineration, recycling, landfill disposal, biodegradation and the use of biodegradable polymers. Incineration of plastic wastes provokes pollution due to the production of poisonous gases. Recycling is important to reduce final costs of plastic materials, but is not enough in face of the amount of discarded plastic. In landfills plastic wastes remain undegraded for a long time, causing space and pollution problems. Biodegradation is a feasible method to treat some plastics, but intensive research is necessary to find conditions for the action of microorganisms. All of these methods are important and the practical application of each one depends on the type and amount of the plastic wastes and the environmental conditions. Therefore, a great deal of research has focused on developing biodegradable plastics and its application because it is an important way for minimizing the effect of the large volume of plastic waste discarded in the world.
Resumo:
This work aimed to carry out an environmental monitoring in sabino narrow river (affluent of Tibiri Basin, in São Luís - MA, Brazil), in order to verify the main environmental impacts caused by effluent residues from Ribeira landfill. Chemical analysis and bibliographic and cartographic researches on this ecosystem were also carried out. In addition, heavy metals, such as Hg, Pb and Zn, were investigated in water samples by ICP-MS technique. It was observed that the contents of such heavy metals were above the tolerance limits established by the Brazilian legislation, showing a strong impact level on the evaluated ecosystem.
Resumo:
An alternative for landfill leachate treatment are advanced oxidation processes by Fenton's reagent (AOP/Fenton). In this context, the aim of this paper was to evaluate, in a bench scale, the treatability of leachate pós-AOP/Fenton characterizing the supernatant and the sludge generated separately. Observed in optimal conditions, high removal efficiency of COD (76.7%), real color (76.4%) and humic substances (50%). Organic compounds were detected in the sludge (2.465 mg COD L-1) and high concentration of iron (1.757 mg L-1) as was expected. Finally, the sludge generated showed low settling hindering their separation by sedimentation (SVI = 321 mL g-1).