37 resultados para Land systems

em Scielo Saúde Pública - SP


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The increase in agricultural production in the Brazilian Amazon region is mostly a result of the agricultural frontier expansion, into areas previously influenced by humans or of native vegetation. At the same time, burning is still used to clear areas in small-scale agricultural systems, leading to a loss of the soil productive capacity shortly after, forcing the opening of new areas. This study had the objective of evaluating the effect of soil preparation methods that involve plant residue shredding, left on the surface or incorporated to the soil, with or without chemical fertilization, on the soil chemical and biological properties. The experiment was conducted in 1995, in an experimental field of Yellow Latosol (Oxisol) of the Embrapa Amazônia Oriental, northeastern Pará (Brazil). The experiment was arranged in randomized blocks, in a 2x6 factorial design, with two management systems and six treatments evaluated twice. The management systems consisted of rice (Oriza sativa), followed by cowpea (Vigna unguiculata) with manioc (Manihot esculenta). In the first system the crops were planted in two consecutive cycles, followed by a three-year fallow period (natural regrowth); the second system consisted of one cultivation cycle and was left fallow for three years. The following treatments were applied to the secondary forest vegetation: slash and burn, fertilized with NPK (Q+NPK); slash and burn, without fertilizer NPK (Q-NPK); cutting and shredding, leaving the residues on the soil surface, fertilized with NPK (C+NPK); cutting and shredding, leaving residues on the soil surface, without fertilizer (C-NPK); cutting and shredding, with residue incorporation and fertilized with NPK (I+NPK); cutting and shredding, with residue incorporation and without NPK fertilizer (I-NPK). The soil was sampled in the rainier season (April 2006) and in the drier season (September 2006), in the 0-0.1 m layer. From each plot, 10 simple samples were collected in order to generate a composite sample. In the more intensive management system the contents of microbial C (Cmic) and microbial N (Nmic) were higher, while the C (Corg) level was higher in the less intensive system. The treatments with highest Cmic and Nmic levels were those with cutting, shredding and distribution of biomass on the soil surface. Under both management systems, the chemical characteristics were in ranges that classify the soil as little fertile, although P and K (in the rainy season) were higher in the less intensive management system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The study of the ecology of soil microbial communities at relevant spatial scales is primordial in the wide Amazon region due to the current land use changes. In this study, the diversity of the Archaea domain (community structure) and ammonia-oxidizing Archaea (richness and community composition) were investigated using molecular biology-based techniques in different land-use systems in western Amazonia, Brazil. Soil samples were collected in two periods with high precipitation (March 2008 and January 2009) from Inceptisols under primary tropical rainforest, secondary forest (5-20 year old), agricultural systems of indigenous people and cattle pasture. Denaturing gradient gel electrophoresis of polymerase chain reaction-amplified DNA (PCR-DGGE) using the 16S rRNA gene as a biomarker showed that archaeal community structures in crops and pasture soils are different from those in primary forest soil, which is more similar to the community structure in secondary forest soil. Sequence analysis of excised DGGE bands indicated the presence of crenarchaeal and euryarchaeal organisms. Based on clone library analysis of the gene coding the subunit of the enzyme ammonia monooxygenase (amoA) of Archaea (306 sequences), the Shannon-Wiener function and Simpson's index showed a greater ammonia-oxidizing archaeal diversity in primary forest soils (H' = 2.1486; D = 0.1366), followed by a lower diversity in soils under pasture (H' = 1.9629; D = 0.1715), crops (H' = 1.4613; D = 0.3309) and secondary forest (H' = 0.8633; D = 0.5405). All cloned inserts were similar to the Crenarchaeota amoA gene clones (identity > 95 %) previously found in soils and sediments and distributed primarily in three major phylogenetic clusters. The findings indicate that agricultural systems of indigenous people and cattle pasture affect the archaeal community structure and diversity of ammonia-oxidizing Archaea in western Amazon soils.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Soil compaction is one of the main degradation causes, provoked by inappropriate agricultural practices that override the limitations of the soil physical properties. Preconsolidation pressure and penetration resistance have proved effective as alternative to assess and identify soil compaction. Based on the interpretation of these physico-mechanical parameters, compaction can be prevented with a better adjusted soil management. This study was performed to generate preconsolidation pressure and penetration resistance models for Latososlo Vermelho-Amarelo distrófico (Oxisol) under various managements and uses; and evaluate which of these would lead to degradation or degradation susceptibility. The study was carried out in Curvelo, MG. Two managements and one land use were evaluated: no-tillage, sheep grazing and natural forest. Undisturbed soil samples collected from the 0-5 cm layer were subjected to uniaxial compression and penetration resistance tests. Preconsolidation pressure models for forest and no-tillage soils were not statistically different, demonstrating a low degradation potential in no-tillage systems. Preconsolidation pressure was higher in soil under sheep grazing at all water retention tensions and penetration resistance values were higher than under native forest indicating animal trampling as a potential degradation factor. Neither management presented penetration resistance values above 2 MPa at field capacity moisture. Only under sheep grazing the soil penetrability was near 2 MPa at field capacity and values greater than 2 MPa at 0.2 kg kg-1.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated the contribution of agroforestry (AFS) and traditional systems to carbon sequestration and nutrient reserves in plants, litter and soil. The study was carried out in the semiarid region of Brazil in a long-term experiment on an experimental farm of the goat and sheep section of the Brazilian Agricultural Research Corporation (Embrapa). Two agroforestry systems were investigated: agrosilvopastoral (ASP) and forest-pasture areas (SP) as well as traditional agriculture management (TM), two areas left fallow after TM (six fallow years - F6 and nine fallow years - F9) and one area of preserved Caatinga vegetation (CAT). Soil, litter and plants were sampled from all areas and the contents of C, N, P, K, Ca and Mg per compartment determined. The AFS (ASP and SP) had higher nutrient stocks than the traditional and intermediate stocks compared to the preserved Caatinga. In the ASP, a relevant part of the nutrients extracted by crops is returned to the system by constant inputs of litter, weeding of herbaceous vegetation and cutting of the legume crops. After fallow periods of six and nine years, carbon and nutrient stocks in the compartments soil, litter and herbaceous plants were similar to those of the preserved Caatinga (CAT), but still lower than under natural conditions in the woody vegetation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pressures on the Brazilian Amazon forest have been accentuated by agricultural activities practiced by families encouraged to settle in this region in the 1970s by the colonization program of the government. The aims of this study were to analyze the temporal and spatial evolution of land cover and land use (LCLU) in the lower Tapajós region, in the state of Pará. We contrast 11 watersheds that are generally representative of the colonization dynamics in the region. For this purpose, Landsat satellite images from three different years, 1986, 2001, and 2009, were analyzed with Geographic Information Systems. Individual images were subject to an unsupervised classification using the Maximum Likelihood Classification algorithm available on GRASS. The classes retained for the representation of LCLU in this study were: (1) slightly altered old-growth forest, (2) succession forest, (3) crop land and pasture, and (4) bare soil. The analysis and observation of general trends in eleven watersheds shows that LCLU is changing very rapidly. The average deforestation of old-growth forest in all the watersheds was estimated at more than 30% for the period of 1986 to 2009. The local-scale analysis of watersheds reveals the complexity of LCLU, notably in relation to large changes in the temporal and spatial evolution of watersheds. Proximity to the sprawling city of Itaituba is related to the highest rate of deforestation in two watersheds. The opening of roads such as the Transamazonian highway is associated to the second highest rate of deforestation in three watersheds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT Amphibians are the most threatened vertebrate group according to the IUCN. Land-use and land cover change (LULCC) and climate change (CC) are two of the main factors related to declining amphibian populations. Given the vulnerability of threatened and rare species, the study of their response to these impacts is a conservation priority. The aim of this work was to analyze the combined impact of LULCC and CC on the regionally endemic species Melanophryniscus sanmartini Klappenbach, 1968. This species is currently categorized as near threatened by the IUCN, and previous studies suggest negative effects of projected changes in climate. Using maximum entropy methods we modeled the effects of CC on the current and mid-century distribution of M. sanmartini under two IPCC scenarios - A2 (severe) and B2 (moderate). The effects of LULCC were studied by superimposing the potential distribution with current land use, while future distribution models were evaluated under the scenario of maximum expansion of soybean and afforestation in Uruguay. The results suggest that M. sanmartini is distributed in eastern Uruguay and the south of Brazil, mainly related to hilly and grasslands systems. Currently more than 10% of this species' distribution is superimposed by agricultural crops and exotic forest plantations. Contrasting with a recent modelling study our models suggest an expansion of the distribution of M. sanmartini by mid-century under both climate scenarios. However, despite the rise in climatically suitable areas for the species in the future, LULCC projections indicate that the proportion of modified habitats will occupy up to 25% of the distribution of M. sanmartini. Future change in climate conditions could represent an opportunity for M. sanmartini, but management measures are needed to mitigate the effects of habitat modification in order to ensure its survival and allow the eventual expansion of its distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil organic matter can be analyzed on the basis of the different fractions. Changes in the levels of organic matter, caused by land use, can be better understood by alterations in the different compartments. The aim of this study was to evaluate the effect of different management systems on the labile and stable organic matter of a dystrophic Red Latosol (Oxisol). The following properties were determined: total organic C and total N (TOC and TN), particulate organic C and particulate N (POC and PN), organic C and N mineral-associated (MOC and NM) and particulate organic C associated with aggregate classes (POCA). Eight treatments were used: seven with soil management systems and one with native Cerrado as a reference. The experiment was designed to study the dynamics of systems of tillage and crop rotation, alternating in time and space. The experimental design was a randomized block design with three replications. The soil samples were collected from five depths: 0-5, 5-10, 10-20, 20-30 and 30-40 cm. Changes in organic C by land use occurred mainly in the fraction of particulate organic matter (> 53 mm). Proper management of grazing promoted increased levels of particulate organic matter by association with larger aggregates (2-8 mm), demonstrating the importance of the formation of this aggregate class for C protection in pasture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Incongruous management techniques have been associated with some significant loss of agricultural land to degradation in many parts of the world. Land degradation results in the alteration of physical, chemical and biological properties of the soil, thereby posing a serious threat to sustainable agricultural development. In this study, our objective is to evaluate the changes in a Cambisol structure under six land use systems using the load bearing capacity model. Sampling was conducted in Amazonas Region, Brazil, in the following land use: a) young secondary forest; b) old secondary forest; c) forest; d) pasture; e) cropping, and f) agroforestry. To obtain the load bearing capacity models the undisturbed soil samples were collected in those land use systems and subjected to the uniaxial compression test. These models were used to evaluate which land use system preserved or degraded the Cambisol structure. The results of the bulk density and total porosity of the soil samples were not adequate to quantify structural degradation in Cambisol. Using the forest topsoil level (0-0.03 m) as a reference, it was observed that pasture land use system was most severe in the degradation of the soil structure while the structure were most preserved under old secondary forest, cropping system and forest. At the subsoil level (0.10-0.13 m depth), the soil structure was most degraded in the cropping land use system while it was most preserved in young secondary forest and pasture. At the 0.20-0.23 m depth, soil structure degradation was most severe in the old secondary forest system and well preserved in young secondary forest, cropping and agroforestry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil erosion is one of the chief causes of agricultural land degradation. Practices of conservation agriculture, such as no-tillage and cover crops, are the key strategies of soil erosion control. In a long-term experiment on a Typic Paleudalf, we evaluated the temporal changes of soil loss and water runoff rates promoted by the transition from conventional to no-tillage systems in the treatments: bare soil (BS); grassland (GL); winter fallow (WF); intercrop maize and velvet bean (M+VB); intercrop maize and jack bean (M+JB); forage radish as winter cover crop (FR); and winter cover crop consortium ryegrass - common vetch (RG+CV). Intensive soil tillage induced higher soil losses and water runoff rates; these effects persisted for up to three years after the adoption of no-tillage. The planting of cover crops resulted in a faster decrease of soil and water loss rates in the first years after conversion from conventional to no-tillage than to winter fallow. The association of no-tillage with cover crops promoted progressive soil stabilization; after three years, soil losses were similar and water runoff was lower than from grassland soil. In the treatments of cropping systems with cover crops, soil losses were reduced by 99.7 and 66.7 %, compared to bare soil and winter fallow, while the water losses were reduced by 96.8 and 71.8 % in relation to the same treatments, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intensive land use can lead to a loss of soil physical quality with negative impacts on soil aggregates, resistance to root penetration, porosity, and bulk density. Organic and agroforestry management systems can represent sustainable, well-balanced alternatives in the agroecosystem for promoting a greater input of organic matter than the conventional system. Based on the hypothesis that an increased input of organic matter improves soil physical quality, this study aimed to evaluate the impact of coffee production systems on soil physical properties in two Red-Yellow Oxisols (Latossolos Vermelho-Amarelos) in the region of Caparaó, Espirito Santo, Brazil. On Farm 1, we evaluated the following systems: primary forest (Pf1), organic coffee (Org1) and conventional coffee (Con1). On Farm 2, we evaluated: secondary forest (Sf2), organic coffee intercropped with inga (Org/In2), organic coffee intercropped with leucaena and inga (Org/In/Le2), organic coffee intercropped with cedar (Org/Ced2) and unshaded conventional coffee (Con2). Soil samples were collected under the tree canopy from the 0-10, 10-20 and 20-40 cm soil layers. Under organic and agroforestry coffee management, soil aggregation was higher than under conventional coffee. In the agroforestry system, the degree of soil flocculation was 24 % higher, soil moisture was 80 % higher, and soil resistance to penetration was lower than in soil under conventional coffee management. The macroaggregates in the organic systems, Org/In2, Org/In/Le2, and Org/Ced2 contained, on average, 29.1, 40.1 and 34.7 g kg-1 organic carbon, respectively. These levels are higher than those found in the unshaded conventional system (Con2), with 20.2 g kg-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in land use and management can affect the dynamic equilibrium of soil systems and induce chemical and mineralogical alterations. This study was based on two long-term experiments (10 and 27 years) to evaluate soil used for no-tillage maize cultivation, with and without poultry litter application (NTPL and NTM), and with grazed native pasture fertilized with cattle droppings (GrP), on the chemical and mineralogical characteristics of a Rhodic Paleudult in Southern Brazil, in comparison with the same soil under native grassland (NGr). In the four treatments, soil was sampled from the 0.0-2.5 and 2.5-5.0 cm layers. In the air-dried fine soil (ADFS) fraction (∅ < 2 mm), chemical characteristics of solid and liquid phases and the specific surface area (SSA) were evaluated. The clay fraction (∅ < 0.002 mm) in the 0.0-2.5 cm layer was analyzed by X-ray diffraction (XRD) after treatments for identification and characterization of 2:1 clay minerals. Animal waste application increased the total organic C concentration (COT) and specific surface area (SSA) in the 0.0-2.5 cm layer. In comparison to NGr, poultry litter application (NTPL) increased the concentrations of Ca and CECpH7, while cattle droppings (GrP) increased the P and K concentrations. In the soil solution, the concentration of dissolved organic C was positively related with COT levels. With regard to NGr, the soil use with crops (NTM and NTPL) had practically no effect on the chemical elements in solution. On the other hand, the concentrations of most chemical elements in solution were higher in GrP, especially of Fe, Al and Si. The Fe and Al concentrations in the soil iron oxides were lower, indicating reductive/complexive dissolution of crystalline forms. The X-ray diffraction (XRD) patterns of clay in the GrP environment showed a decrease in intensity and reflection area of the 2:1 clay minerals. This fact, along with the intensified Al and Si activity in soil solution indicate dissolution of clay minerals in soil under cattle-grazed pasture fertilized with animal droppings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantification of soil physical quality (SPQ) and pore size distribution (PSD) can assist understanding of how changes in land management practices influence dynamics of soil structure, and this understanding could greatly improve the predictability of soil physical behavior and crop yield. The objectives of this study were to measure the SPQ index under two different land management practices (the continuous arable cropping system and natural bush fallow system), and contrast the effects of these practices on the structure of PSD using soil water retention data. Soil water retention curves obtained from a pressure chamber were fitted to van Genuchten’s equation, setting m (= 1-1/n). Although values for soil bulk density were high, soils under the continuous arable cropping system had good SPQ, and maintained the capacity to support root development. However, soils under the natural bush fallow system had a worse structure than the continuous arable system, with restrictions in available water capacity. These two management systems had different PSDs. Results showed the inferiority of the natural bush fallow system with no traffic restriction (which is the common practice) in relation to the continuous arable cropping system in regard to physical quality and structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT Water erosion is one of the main factors driving soil degradation, which has large economic and environmental impacts. Agricultural production systems that are able to provide soil and water conservation are of crucial importance in achieving more sustainable use of natural resources, such as soil and water. The aim of this study was to evaluate soil and water losses in different integrated production systems under natural rainfall. Experimental plots under six different land use and cover systems were established in an experimental field of Embrapa Agrossilvipastoril in Sinop, state of Mato Grosso, Brazil, in a Latossolo Vermelho-Amarelo Distrófico (Udox) with clayey texture. The treatments consisted of perennial pasture (PAS), crop-forest integration (CFI), eucalyptus plantation (EUC), soybean and corn crop succession (CRP), no ground cover (NGC), and forest (FRS). Soil losses in the treatments studied were below the soil loss limits (11.1 Mg ha-1 yr-1), with the exception of the plot under bare soil (NGC), which exhibited soil losses 30 % over the tolerance limit. Water losses on NGC, EUC, CRP, PAS, CFI and FRS were 33.8, 2.9, 2.4, 1.7, 2.4, and 0.5 % of the total rainfall during the period of study, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to assess the effects of integrated crop-livestock systems, associated with two tillage and two fertilization regimes, on the abundance and diversity of the soil macrofauna. Four different management systems were studied: continuous pasture (mixed grass); continuous crop; two crop-livestock rotations (crop/pasture and pasture/crop); and native Cerrado as a control. Macrofauna was sampled using a modified Tropical Soil Biology and Fertility method, and all individuals were counted and identified at the morphospecies level for each plot. A total of 194 morphospecies were found, distributed among 30 groups, and the most representative in decreasing order of density were: Isoptera, Coleoptera larvae, Formicidae, Oligochaeta, Coleoptera adult, Diplopoda, Hemiptera, Diptera larvae, Arachnida, Chilopoda, Lepidoptera, Gasteropoda, Blattodea and Orthoptera. Soil management systems and tillage regimes affected the structure of soil macrofauna, and integrated crop-livestock systems, associated with no-tillage, especially with grass/legume species associations, had more favorable conditions for the development of "soil engineers" compared with continuous pasture or arable crops. Soil macrofauna density and diversity, assessed at morphospecies level, are effective data to measure the impact of land use in Cerrado soils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use conflicts are determined by the inadequate occupations of the soil, as it is the case of soil occupation inside of permanent preservation areas. This study aimed to determine the classes of the soil use and if there are conflicts inside of permanent preservation areas along the drainage network of the Água Fria Stream watershed, located in Bofete city - São Paulo, Brazil. It locates geographically between the coordinates: 48°09'30" to 48°18'30" longitude WGr., 22°58'30" to 23°04'30" latitude S, with an area of 15242.84 ha. The map of soil use was elaborated through the interpretation directly in the computer screen of satellite digital image. In the orbital data, the study area is inserted in the quadrant A, of image TM/Landsat - 5, orbit 220, point 76, passage 9/8th/2007. The Geographical Information System used was CartaLinx. The conflict areas of the watershed were obtained from the crossing between the maps of soil use and of PPAs. The results allowed the conclusion that more than half of the area (51.09%) is occupied by pastures, reflex of sandy soils and low fertility. It was also verified that although almost half of the watershed is covered with some type of vegetation (48.78% of natural forest /reforestation), it has approximately a third of permanent preservation areas used inappropriately by pastures (88.15%), reforestation (10.42%) and exposed soil (1.43%), totaling 343.07ha of conflicting areas, in a total of 993.26 ha of PPAs.