5 resultados para Kansas State Agricultural College. Experiment Station.
em Scielo Saúde Pública - SP
Resumo:
Ammonia (NH3) volatilization can reduce the efficiency of urea applied to the surface of no-till (NT) soils. Thus, the objectives of this study were to evaluate the magnitude of NH3 losses from surface-applied urea and to determine if this loss justifies the urea incorporation in soil or its substitution for other N sources under the subtropical climatic conditions of South-Central region of Paraná State, Brazil. The experiment, performed over four harvesting seasons in a clayey Hapludox followed a randomized block design with four replicates. A single dose of N (150 kg ha-1) to V5 growth stage of corn cultivated under NT system was applied and seven treatments were evaluated, including surface-applied urea, ammonium sulfate, ammonium nitrate, urea with urease inhibitor, controlled-release N source, a liquid N source, incorporated urea, and a control treatment with no N application. Ammonia volatilization was evaluated for 20 days after N application using a semi-open static system. The average cumulative NH3 loss due to the superficial application of urea was low (12.5 % of the applied N) compared to the losses observed in warmer regions of Southeastern Brazil (greater than 50 %). The greatest NH3 losses were observed in dry years (up to 25.4 % of the applied N), and losses decreased exponentially as the amount of rainfall after N application increased. Incorporated urea and alternative N sources, with the exception of controlled-release N source, decreased NH3 volatilization in comparison with surface-applied urea. Urea incorporation is advantageous for the reduction of NH3 volatilization; however, other aspects as its low operating efficiency should be considered before this practice is adopted. In the South-Central region of Paraná, the low NH3 losses from the surface-applied urea in NT system due to wet springs and mild temperatures do not justify its replacement for other N sources.
Resumo:
Chlorophyll determination with a portable chlorophyll meter can indicate the period of highest N demand of plants and whether sidedressing is required or not. In this sense, defining the optimal timing of N application to common bean is fundamental to increase N use efficiency, increase yields and reduce the cost of fertilization. The objectives of this study were to evaluate the efficiency of N sufficiency index (NSI) calculated based on the relative chlorophyll index (RCI) in leaves, measured with a portable chlorophyll meter, as an indicator of time of N sidedressing fertilization and to verify which NSI (90 and 95 %) value is the most appropriate to indicate the moment of N fertilization of common bean cultivar Perola. The experiment was carried out in the rainy and dry growing seasons of the agricultural year 2009/10 on a dystroferric Red Nitosol, in Botucatu, São Paulo State, Brazil. The experiment was arranged in a randomized complete block design with five treatments, consisting of N managements (M1: 200 kg ha-1 N (40 kg at sowing + 80 kg 15 days after emergence (DAE) + 80 kg 30 DAE); M2: 100 kg ha-1 N (20 kg at sowing + 40 kg 15 DAE + 40 kg 30 DAE); M3: 20 kg ha-1 N at sowing + 30 kg ha-1 when chlorophyll meter readings indicated NSI < 95 %; M4: 20 kg ha-1 N at sowing + 30 kg ha-1 N when chlorophyll meter readings indicated NSI < 90 % and, M5: control (without N application)) and four replications. The variables RCI, aboveground dry matter, total leaf N concentration, production components, grain yield, relative yield, and N use efficiency were evaluated. The RCI correlated with leaf N concentrations. By monitoring the RCI with the chlorophyll meter, the period of N sidedressing of common bean could be defined, improving N use efficiency and avoiding unnecessary N supply to common bean. The NSI 90 % of the reference area was more efficient to define the moment of N sidedressing of common bean, to increase N use efficiency.
Resumo:
Where the level of agricultural technology is higher, common bean cultivars with a higher yield potential possibly require greater amounts of micronutrients. In Brazil however, there is a lack of information about the micronutrient extraction and exportation by the main grown cultivars. The objective of this study was to evaluate micronutrient (B, Cu, Fe, Mn, and Zn) extraction and exportation by common bean cultivars Pérola and IAC Alvorada, under different levels of NPK fertilization, on a dystroferric Red Nitosol, in Botucatu, São Paulo State, Brazil. The experiment was arranged in a randomized complete block (split plot) design with four replications. The plots consisted of six treatments based on a 2 x 3 factorial model, represented by two cultivars and three NPK levels (PD0 - 'Pérola' without fertilization, PD1 - 'Pérola' with 50 % of recommended fertilization, PD2 - 'Pérola' with 100 % of recommended fertilization, AD0 - 'IAC Alvorada' without fertilization, AD1 - 'IAC Alvorada' with 50 % of recommended fertilization, and AD2 - 'IAC Alvorada' with 100 % of recommended fertilization) and subplots sampled seven times during the cycle. Higher levels of NPK fertilization increased micronutrient extraction by both cultivars, and treatments with 100 % of recommended NPK fertilization extracted on average 167 g B, 58 g Cu, 1,405 g Fe, 1,213 g Mn and 211 g Zn per hectare. Regardless of the treatment, the highest demand period for B, Cu, Fe, Mn and Zn in both cultivars occurred at the R7 stage (pod formation), i.e. 42 to 55 days after emergence (DAE). The amount of B, Cu, Fe, Mn and Zn exported depended mainly on the level of NPK fertilization used, with values per hectare ranging from 38 to 90 g of B, 12 to 26 g of Cu, 222 to 568 g of Fe 234 to 467 g of Mn, and 40 to 96 g of Zn.
Resumo:
Two field experiments were conducted to evaluate the effects of multispecies weed competition on wheat grain yield and to determine their economic threshold on the crop. The experiments were conducted in 2002, on two sites in Iran: at the Agricultural Research Station on Ferdowsi University of Mashhad (E1) and on the fields of Shirvan's Agricultural College (E2). A 15 x 50 m area of a 15 ha wheat field in E1 and a 15 x 50 m area of a 28 ha wheat field in E2 were selected as experimental sites. These areas were managed like other parts of the fields, except for the use of herbicides. At the beginning of the shooting stage, 30 points were randomly selected by dropping a 50 x 50 cm square marker on each site. The weeds present in E1 were: Avena ludoviciana, Chenopodium album, Solanum nigrum, Stellaria holostea, Convolvulus spp., Fumaria spp., Sonchus spp., and Polygonum aviculare. In E2 the weeds were A. ludoviciana, Erysimum sp., P. aviculare, Rapistrum rugosum, C. album, Salsola kali, and Sonchus sp. The data obtained within the sampled squares were submitted to regression equations and weeds densities were calculated in terms of TCL (Total Competitive Load). The regression analysis model indicated that only A. ludoviciana, Convolvulus spp. and C. album, in E1; and A. ludoviciana, S. kali, and R. rugosum, in E2 had a significant effect on the wheat yield reduction. Weed economic thresholds were 5.23 TCL in E1 and 6.16 TCL in E2; which were equivalent to 5 plants m-2 of A. ludoviciana or 12 plants m-2 of Convolvulus spp. or 19 plants m-2 of C. album in E1; and 6 plants m-2 A. ludoviciana, 13 plants m-2 S. kali and 27 plants m-2 R. rugosum in E2. Simulations of economic weed thresholds using several wheat grain prices and weed control costs allowed a better comparison of the experiments, suggesting that a more competitive crop at location E1 than at E2 was the cause of a lower weed competitive ability at the first location.
Resumo:
Functional MRI (fMRI) resting-state experiments are aimed at identifying brain networks that support basal brain function. Although most investigators consider a ‘resting-state’ fMRI experiment with no specific external stimulation, subjects are unavoidably under heavy acoustic noise produced by the equipment. In the present study, we evaluated the influence of auditory input on the resting-state networks (RSNs). Twenty-two healthy subjects were scanned using two similar echo-planar imaging sequences in the same 3T MRI scanner: a default pulse sequence and a reduced “silent” pulse sequence. Experimental sessions consisted of two consecutive 7-min runs with noise conditions (default or silent) counterbalanced across subjects. A self-organizing group independent component analysis was applied to fMRI data in order to recognize the RSNs. The insula, left middle frontal gyrus and right precentral and left inferior parietal lobules showed significant differences in the voxel-wise comparison between RSNs depending on noise condition. In the presence of low-level noise, these areas Granger-cause oscillations in RSNs with cognitive implications (dorsal attention and entorhinal), while during high noise acquisition, these connectivities are reduced or inverted. Applying low noise MR acquisitions in research may allow the detection of subtle differences of the RSNs, with implications in experimental planning for resting-state studies, data analysis, and ergonomic factors.