19 resultados para Isotropic Käher Manifold
em Scielo Saúde Pública - SP
Resumo:
A non isotropic turbulence model is extended and applied to three dimensional stably stratified flows and dispersion calculations. The model is derived from the algebraic stress model (including wall proximity effects), but it retains the simplicity of the "eddy viscosity" concept of first order models. The "modified k-epsilon" is implemented in a three dimensional numerical code. Once the flow is resolved, the predicted velocity and turbulence fields are interpolated into a second grid and used to solve the concentration equation. To evaluate the model, various steady state numerical solutions are compared with small scale dispersion experiments which were conducted at the wind tunnel of Mitsubishi Heavy Industries, in Japan. Stably stratified flows and plume dispersion over three distinct idealized complex topographies (flat and hilly terrain) are studied. Vertical profiles of velocity and pollutant concentration are shown and discussed. Also, comparisons are made against the results obtained with the standard k-epsilon model.
Resumo:
In this paper is Analyzed the local dynamical behavior of a slewing flexible structure considering nonlinear curvature. The dynamics of the original (nonlinear) governing equations of motion are reduced to the center manifold in the neighborhood of an equilibrium solution with the purpose of locally study the stability of the system. In this critical point, a Hopf bifurcation occurs. In this region, one can find values for the control parameter (structural damping coefficient) where the system is unstable and values where the system stability is assured (periodic motion). This local analysis of the system reduced to the center manifold assures the stable / unstable behavior of the original system around a known solution.
Resumo:
This article was written by a Swiss-German historical demographer after having visited different Brazilian Universities in 1984 as a guest-professor. It aims at promoting a real dialog between developed and developing countries, commencing the discussion with the question: Can we learn from each other? An affirmative answer is given, but not in the superficial manner in which the discussion partners simply want to give each other some "good advice" or in which the one declares his country's own development to be the solely valid standard. Three points are emphasized: 1. Using infant mortality in S. Paulo from 1908 to 1983 as an example, it is shown that Brazil has at its disposal excellent, highly varied research literature that is unjustifiably unknown to us (in Europe) for the most part. Brazil by no means needs our tutoring lessons as regards the causal relationships; rather, we could learn two things from Brazil about this. For one, it becomes clear that our almost exclusively medical-biological view is inappropriate for passing a judgment on the present-day problems in Brazil and that any conclusions so derived are thus only transferable to a limited extent. For another, we need to reinterpret the history of infant mortality in our own countries up to the past few decades in a much more encompassing "Brazilian" sense. 2. A fruitful dialog can only take place if both partners frankly present their problems. For this reason, the article refers with much emprasis to our present problems in dealing with death and dying - problems arising near the end of the demographic and epidemiologic transitions: the superanuation of the population, chronic-incurable illnesses as the main causes of death, the manifold dependencies of more and more elderly and really old people at the end of a long life. Brazil seems to be catching up to us in this and will be confronted with these problems sooner or later. A far-sighted discussion already at this time seems thus to be useful. 3. The article, however, does not want to conclude with the rather depressing state of affairs of problems alternatingly superseding each other. Despite the caution which definitely has a place when prognoses are being made on the basis of extrapolations from historical findings, the foreseeable development especially of the epidemiologic transition in the direction of a rectangular survival curve does nevertheless provide good reason for being rather optimistic towards the future: first in regards to the development in our own countries, but then - assuming that the present similar tendencies of development are stuck to - also in regard to Brazil.
Resumo:
A simple laboratory technique is described for the synthesis of cyclopentadienylthallium and methylcyclopentadienylthallium and their use in the preparation of air sensitive metallocenes in solution. It does not use manifold, drybox or any other special glassware and was applied to the synthesis of cobaltocene, nickelocene and their methyl substituted analogs.
Resumo:
Didactic experiments are proposed in order to demonstrate the characteristics of flow injection analysis and to extend the applications of FIA to the determination of physical chemistry parameters in undergraduate labs. All experiments can be performed with the same flow manifold by employing usual FIA devices. Analytical characteristics are presented by means of the determination of iron in river water, employing 1,10-phenantroline as chromogenic reagent. Physical chemistry applications were the determination of reaction stoichiometries by continuous variation and mole-ratio methods and the evaluation of the pH and ionic strength effects on the kinetic of the reduction of hexacianoferrate(III) by ascorbic acid.
Resumo:
A spectrophotometric flow injection analysis (FIA) procedure employing natural urease enzyme source for the determination of urea in animal blood plasma was developed. Among leguminous plants used in the Brazilian agriculture, the Cajanus cajan specie was selected as urease source considering its efficiency and availability. A minicolumn was filled with leguminous fragments and coupled to the FIA manifold, where urea was on-line converted to ammonium ions and subsequently it was quantified by spectrophotometry. The system was employed to determine urea in animal plasma samples without any prior treatment. Accuracy was assessed by comparison results with those obtained employing the official procedure and no significant difference at 90 % confidence level was observed. Other profitable features such as an analytical throughput of 30 determinations per hour, a reagent consumption of 19.2 mg sodium salicylate, 0.5 mg sodium hipochloride and a relative standard deviation of 1.4 % (n= 12) were also obtained.
Resumo:
This paper presents an automatic procedure employing a reagent in the form of a slurry in a flow-injection system. The feasibility of the proposal is demonstrated by sulphate determination in water using the Barium Chloranilate method, which is based on the precipitation of barium sulphate. The release of a stoichiometric amount of highly colored chloranilic ions is monitored at 528 nm. The reaction is carried out in alcoholic medium in order to reduce the solubility of the reagent. A considerable improvement in the sensitivity is attained by adding ferric ions to the released chloranilic ions. An on-line filtration step to separate the excess reagent from the released chloranilic ions was necessary. In addition, a column containing a cation exchange resin was included in the manifold to remove potentially interfering ions. The proposed procedure is suitable for 30 determinations per hour and the relative standard deviation is less than 2%. The analytical curve is linear between 0.0 and 40 mg L-1 and the determination limit is about 2.0 mg L-1SO4(2-). Accuracy was confirmed by running several samples already analysed by a standard turbidimetric procedure.
Resumo:
An automatic flow injection procedure for spectrophotometric aluminium determination in purified water and solutions containing high salts concentrations used for hemodyalisis treatment was developed. The method was base on reaction of Al3+ with cianine eriochrome R (ECR) after preconcentration using the AG50W-X8 cationic-exchange resin. Elution was carried out using a 1 % (m/v) calcium chloride solution. The manifold comprised an automatic proporcional injector controlled by a computer equipped with an eletronic interface and software written in QuicBASIC 4.5 with facilities to control the injector and perform data acquisition. Samples with concentration ranging from 4.96 to 19.90 µg L-1 Al were analyzed and recoveries between 88 and 113% were obtained by using the standard addition method. Other profitable analytical characteristics such as a relative standard deviation 1.3 % (n = 10) for a typical sample 14.5 µg L-1 Al, a linear response ranging up to 60.0 µg L-1Al, and a sampling throughput of 10 determinations per hour were achieved. A detection limit of 4.2 µg L-1 Al was estimated as suggested by IUPAC.
Resumo:
In this work a micro-heater device to be used as an integral part of the flow analysis manifold is described. The usefulness of the device was demonstrated using it in the development of a multicommutated flow analysis procedure for the spectrophotometric determination of manganese in plant digest. The method was based on the manganese oxidation by periodate in phosphoric acid medium to form the permanganate anion. The reaction development is dependent on the temperature and it was observed that at 25 °C a time interval of ca. 15 min was necessary for the reaction to attain equilibrium. Setting the temperature to 70 ºC, this time interval could be decreased to ca. 30 s. This condition was easily attained employing the proposed micro-heater device coupled to the manifold. The procedure was applied to manganese determination in soybean digests and results compared with those obtained by inductively coupled argon plasma optical emission spectrometry (ICP-OES). No significant difference at 90% confidence level was observed. A linear response for sample concentrations ranging from 5.0 to 30.00 mg L-1 Mn2+; a relative standard deviation of 1.3% (n = 6) for a typical sample containing 6.3 mg L-1 Mn2+; a sampling rate of 22 determinations per hour; a low reagent consumption, of 12.0 mg NaIO4 per determination; and a detection limit of 1.2 mg L-1 were achieved.
Resumo:
The reduction kinetics of a CuO/ZnO/Al2O3 catalyst by hydrogen was investigated isothermally and by temperature programmed reduction (TPR). Two reducible Cu2+ species were detected; the first one was identified as CuO bulk and the other as Cu2+ strongly interacting with alumina, possibly in the form of copper aluminate. The activation energies for the reduction of these two species were 60 and 90 kJ mol-1, respectively, and the reaction order with respect to hydrogen was one. The isothermal reduction data showed that the isotropic growth model is the most appropriate to describe the reaction rate data for both Cu2+ species.
Resumo:
A solid-phase in-line extraction system for water samples containing low levels of emerging contaminants is described. The system was specially developed for large volume samples (up to 4 L) using commercial solid-phase extraction (SPE) cartridges. Four sets containing PTFE-made connectors, brass adapters and ball valves were used to fit SPE cartridges and sample bottles to a 4-port manifold attached to a 20 L carboy. A lab-made vacuum device was connected to the manifold cap. The apparatus is robust and less expensive than the typical available system. Its also provides less experimental handling, avoiding cross contamination and sample losses.
Resumo:
The aggregation behavior of the non-ionic surfactant Renex-100 in aqueous solutions and mesophases was evaluated by SAXS in a wide range of concentrations, between 20 and 30 °C. Complementary, water interactions were defined by DSC curves around 0°C. SAXS showed that the system undergoes the following phase transitions, from diluted to concentrated aqueous solutions: 1) isotropic solution of Renex aggregates; 2) hexagonal mesophase; 3) lamellar mesophase; and 4) isotropic solution. DSC analysis indicated the presence of interfacial water above 70wt%, which agreed with the segregation of free water to form the structural mesophases observed by SAXS bellow this concentration.
Resumo:
The phase behavior of an alcohol polyethoxylated surfactant with decane and dodecane oil phase varying the water proportion from 5 to 90% to determine compositions in which the formation of liquid crystals and microemulsions ocurred was investigated. Pseudoternary phase diagrams were built to represent the regions of liquid crystals, biphases and microemulsions. Polarized light optical microscopy was used for the analysis and characterization of the separate phases. The micrographs obtained showed characteristics of hexagonal and lamellar phases of liquid crystal, isotropic phases, microemulsions and vesicles. This study is important to propose hypothesis regarding the factors determining the formation and stability of phases composed by surfactant/oil/water systems.
Resumo:
View angle and directional effects significantly affect reflectance and vegetation indices, especially when daily images collected by large field-of-view (FOV) sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS) are used. In this study, the PROSAIL radiative transfer model was chosen to evaluate the impact of the geometry of data acquisition on soybean reflectance and two vegetation indices (Normalized Difference Vegetation Index - NDVI and Enhanced Vegetation Index -EVI) by varying biochemical and biophysical parameters of the crop. Input values for PROSAIL simulation were based on the literature and were adjusted by the comparison between simulated and real satellite soybean spectra acquired by the MODIS/Terra and hyperspectral Hyperion/Earth Observing-One (EO-1). Results showed that the influence of the view angle and view direction on reflectance was stronger with decreasing leaf area index (LAI) and chlorophyll concentration. Because of the greater dependence on the near-infrared reflectance, the EVI was much more sensitive to viewing geometry than NDVI presenting larger values in the backscattering direction. The contrary was observed for NDVI in the forward scattering direction. In relation to the LAI, NDVI was much more isotropic for closed soybean canopies than for incomplete canopies and a contrary behavior was verified for EVI.
Portable flow board for storage of fruits and vegetables in mini-chambers with controlled atmosphere
Resumo:
ABSTRACT A portable flow board system was developed in the present study with the aim to facilitate lab-scale experiments of controlled atmosphere (CA) with fruits and vegetables. This sturdy flow board combines ease fabrication, low cost and gas economy. Its functionality is provided by manifolds and gas mixers. Each gaseous component is supplied by a gas cylinder through a differential valve of adjusted pressure control, generally at 6 kPa, and forced through 13 standardized restrictors coupled to each manifold output. Controlled atmospheres are then formed with one, two or three gases in 13 gas mixers affixed to the flow board base, which are further conducted through flexible tubes to storage mini-chambers that can also be used to study metabolic consumption and production of gaseous components. The restrictors used in the flow gaseous components were manufactured from microhematocrit test-type capillary glass tubes following the hot forming method under continuous air flow. The portable flow board showed to be low cost and simple post-harvest equipment that allows preparing controlled atmospheres in open systems with stable composition and flow, in a manner similar to traditional flow boards with control of gas escape by barostats.