13 resultados para Isomerization
em Scielo Saúde Pública - SP
Resumo:
WO3-ZrO2 catalysts promoted with Pt and Pd were tested as paraffin isomerization catalysts using n-hexane as model compound. Sulfur and amine poisoning and regeneration tests were used to assess the impact of the addition of Pt and Pd on the deactivation resistance and regenerability. Pt and PtPd catalysts were the most active for n-hexane isomerization. The low activity of the Pd catalyst was attributed to poor Pd metal properties when supported over WO3-ZrO2 and to a decrease of the number of BrQnsted acid sites. PtPd was the only catalyst capable of full regeneration after S poisoning. Amine poisoning completely supressed the isomerization activity and the original activity could only be restored by calcination and reduction.
Resumo:
Cat's claw oxindole alkaloids are prone to isomerization in aqueous solution. However, studies on their behavior in extraction processes are scarce. This paper addressed the issue by considering five commonly used extraction processes. Unlike dynamic maceration (DM) and ultrasound-assisted extraction, substantial isomerization was induced by static maceration, turbo-extraction and reflux extraction. After heating under reflux in DM, the kinetic order of isomerization was established and equations were fitted successfully using a four-parameter Weibull model (R² > 0.999). Different isomerization rates and equilibrium constants were verified, revealing a possible matrix effect on alkaloid isomerization.
Resumo:
Isomerization - cracking of n-octane was studied using H3PW12O40 (HPA) and HPA supported on zirconia and promoted with Pt and Cs. The addition of Pt and Cs to the supported HPA did not modify the Keggin structure. The Pt addition to the supported HPA did not substantially modify the total acidity; however, the Brönsted acidity increased significantly. Cs increased the total acidity and Brönsted acidity. A linear relation was observed between the n-C8 total conversion and Brönsted acidity. The most adequate catalysts for performing isomerization and cracking to yield high research octane number (RON) are those with higher values of Brönsted acidity.
Resumo:
The present note describes the results of the investigation concerning the possibility of the isomerization of Gorlic acid. Gorlic acid has been isolated on 1938 by Cole & Cardoso (1) and since then a few experiments have been made regarding its particular biological properties. During such researches it was noted a reaction with nitrous acid, similar to that of oleic acid, which has been mencioned on previous paper (6). Using the Bertram selenium method it has been possible to show that gorlic acid would not change to an isomeric form, i.e., no evidence of elaidinization was found. The reaction with nitous acid can be explained by the impurification due to the presence of oleic acid in a very small amount which could not been removed from gorlic acid.
Resumo:
HZSM5 zeolite was modified by exchanging proton by niobium (V). Several samples were obtained with various degrees of exchange. Pore volumes and acidity were measured to characterize these exchanged zeolites. Catalytic properties were evaluated with two reaction tests: m-xylene transformation and n-heptane cracking. The introduction of niobium on HZSM5 zeolite decreases the diffusion coefficient of 2-methyl-pentane and increases the zeolite acidity. The sample containing niobium are initially more active in cracking of n-heptane and m-xylene isomerization than HZSM5 alone.
Resumo:
In coordination chemistry the study of geometrical isomerization and reactivity of specific isomers is a topic of major importance. The preparation of specific isomers often requires considerable complexity, and it is important to acquire a sense of what is involved in studying isomerism in laboratory. If it is difficult sometimes to prepare pure isomers, it is not easier to understand the mechanisms of isomerization reactions since studies on this subject have shown conflicting results and diferent interpretations on the same system have been reported in the literature. Although cis-trans isomerism in octahedral metal complexes is a common occurrence, there are relatively few studies reporting how these isomerizations occur. This paper gives an overview on cis-trans isomerization processes and identification of these species.
Resumo:
Oxyradicals play a tole in several diseases. While for several decades the hydroxyl radical - produced via the Fenton reaction - has been considered the species that initiates oxyradical damage, new findings suggest that much of this damage can be ascribed to peroxynitrite, O=NOO-, formed from the reaction of the superoxide anion with nitrogen monoxide near activated macrophages. The rate constant for the reaction of this reaction has been investigated by flash photolysis and was found to be significantly higher than previously described in the literature, 1.9 x 10(10) M-1s-1. Studies of the isomerization to nitrate resulted in the discovery of a complex between peroxynitrite and its protonated form with a stability constant of 1 x 10(4) M-1. Some of the harmful reaction of peroxynitrous acid have been ascribed to the hydroxyl radical as a product of homolysis of the O-O bond during the conversion to nitrate. Kinetics of the isomerization reaction as a function of pressure show that the activation volume is only +1.5+1.0 ml mol-1, which is inconsistent with homolysis. Instead, an intermediate, possibly a distorted trans-isomer of O=NOOH could be responsible for the harmful reactions of peroxynitrite.
Resumo:
In this work we intend to eliminate the idea that laboratory exercises seem like cookbooks. That is, exercises shall be presented as a problematic situation. Based on observation and experimentation, the students should determine the E-Z configuration of maleic and fumaric acids. The basis of this laboratory exercise is the acid-catalyzed isomerization of maleic acid to fumaric acid. Students are given the starting material, reagents and the experimental procedure. They are told that the starting material is a dicarboxylic acid containing a C=C double bond of formula C4H4O4. Students determine melting points, solubilities, acidity and chromatographic patterns for both the starting material and the product, so that a configuration of each acid can be proposed. This type of experiment yields excellent results, because the students are left to deduce that maleic acid is less stable than fumaric acid. Additionally, they conclude that maleic acid is the "Z" isomer and fumaric acid is the "E" isomer. Finally, this laboratory exercise allows the students to develop simultaneously their critical-thinking skills with the respective laboratory techniques and not to see chemistry as recipes to be followed.
Resumo:
The present review summarizes the most relevant results of our research group obtained recently in the field of unimolecular reaction dynamics. The following processes are specifically analyzed: the isomerization, dissociation and elimination in methyl nitrite, the fragmentation reactions of the mercaptomethyl cation, the C-CO dissociation in the acetyl and propionyl radicals, and the decomposition of vinyl fluoride. In all the cases, only state- or energy-selected systems are considered. Special emphasis is paid to the possibility of systems exhibiting non-statistical behavior.
Resumo:
A detailed NMR (¹H , COSY, ROESY) spectroscopic study of complexation of enalapril maleate with beta-cyclodextrin was carried out. The ¹H NMR spectrum of enalapril maleate confirmed the existence of cis-trans equilibrium in solution, possibly due to hindered rotation along the amide bond. The cis-trans ratio remained almost the same in the presence of beta-cyclodextrin but in one case it was found significantly different which suggests a catalytic role of beta-cyclodextrin in the isomerization. ¹H NMR titration studies confirmed the formation of an enalapril-beta-cyclodextrin inclusion complex as evidenced by chemical shift variations in the proton resonances of both the host and the guest. The stoichiometry of the complex was determined to be 2:1 (guest: host). The mode of penetration of the guest into the beta-cyclodextrin cavity as well as the structure of the complex were established using ROESY spectroscopy.
Resumo:
A comparative study based on potential energy surfaces (PES) of 2-butanedioic and hypothetic 2-butanedioic/HCl acids is useful for understanding the maleic acid isomerization. The PES enables locating conformers of minimum energy, intermediates of reactions and transition states. From contour diagrams, a set of possible reaction paths are depicted interconnecting the proposed structures. The study was carried out in absentia and in the presence of the catalyst (HCl), using an solvatation model provided by the Gaussian software package. Clearly, the effect of HCl is given by new reaction paths with lower energetic barriers in relation to the reaction without catalyzing.
Resumo:
In this work, the preparation and characterization of materials such as zirconium oxide (ZrO2) and phosphotungstic acid promoted zirconium oxide (ZrO2-H3PW12O40) is presented. Physico-chemical characterization results showed that addition of H3PW12O40 acted as both a textural and chemical promoter of zirconium oxide. The incorporation of phosphotungstic acid into the ZrO2 matrix delayed the sintering of the material and stabilized ZrO2 in the tetragonal phase. ZrO2 acidity was also enhanced, developing strong acid sites on its surface. The Pt/ZrO2-H3PW12O40 catalyst was active for n-pentane isomerization at 250 °C, exhibiting high selectivity to iso-pentane (95%). This result is probably due to its suitable acidity.
Resumo:
Carotenoids have antioxidant activity, but few are converted by the body into retinol, the active form of vitamin A. Among the 600 carotenoids with pro-vitamin A activity, the most common are α- and β-carotene. These carotenoids are susceptible to degradation (e.g., isomerization and oxidation) during cooking. The aim of this study was to assess the total carotenoid, α- and β-carotene, and 9 and 13-Z- β-carotene isomer contents in C. moschata after different cooking processes. The raw pumpkin samples contained 236.10, 172.20, 39.95, 3.64 and 0.8610 µg.g- 1 of total carotenoids, β-carotene, α-carotene, 13-cis-β-carotene, and 9-Z-β-carotene, respectively. The samples cooked in boiling water contained 258.50, 184.80, 43.97, 6.80, and 0.77 µg.g- 1 of total carotenoids, β-carotene, α-carotene, 13-Z-β-carotene, and 9-Z-β-carotene, respectively. The steamed samples contained 280.77, 202.00, 47.09, 8.23, and 1.247 µg.g- 1 of total carotenoids, β-carotene, α-carotene,13-Z-β-carotene, and 9-Z-β-carotene, respectively. The samples cooked with added sugar contained 259.90, 168.80, 45.68, 8.31, and 2.03 µg.g- 1 of total carotenoid, β-carotene, α-carotene, 13-Z- β-carotene, and 9-Z- β-carotene, respectively. These results are promising considering that E- β-carotene has 100% pro-vitamin A activity. The total carotenoid and carotenoid isomers increased after the cooking methods, most likely as a result of a higher availability induced by the cooking processes.