45 resultados para Islets encapsulation
em Scielo Saúde Pública - SP
Resumo:
PURPOSE: Hyperglycemia and abnormal glucose tolerance tests observed in some patients with chronic Chagas' disease suggest the possibility of morphological changes in pancreatic islets and/or denervation. The purpose of this study was to describe the morphology and morphometry of pancreatic islets in chronic Chagas' disease. METHODS: Morphologic and computerized morphometric studies were performed in fragments of the head, body, and tail regions of the pancreas obtained at necropsies of 8 normal controls and 17 patients with chronic Chagas' disease: 8 with the digestive form (Megas) and 9 with the congestive heart failure form. RESULTS: The Megas group had a larger (p < 0.05) pancreatic islet area in the tail of the pancreas (10649.3 ± 4408.8 µm²) than the normal control (9481.8 ± 3242.4 µm²) and congestive heart failure (9475.1 ± 2104.9 µm²) groups; likewise, the density of the pancreatic islets (PI) was greater (1.2 ± 0.7 vs. 0.9 ± 0.6 vs. 1.9 ± 1.0 PI/mm², respectively). In the tail region of the pancreas of patients with the Megas form, there was a significant and positive correlation (r = +0.73) between the area and density of pancreatic islets. Discrete fibrosis and leukocytic infiltrates were found in pancreatic ganglia and pancreatic islets of the patients with Chagas' disease. Trypanosoma cruzi nests were not observed in the examined sections. Individuals with the Megas form of Chagas' disease showed increased area and density of pancreatic islets in the tail of the pancreas. CONCLUSION: The observed morphometric and morphologic alterations are consistent with functional changes in the pancreas, including glycemia and insulin disturbances.
Resumo:
Mycobacterium tuberculosis (Mtb) has acquired resistance and consequently the antibiotic therapeutic options available against this microorganism are limited. In this scenario, the use of usnic acid (UA), a natural compound, encapsulated into liposomes is proposed as a new approach in multidrug-resistant tuberculosis (MDR-TB) therapy. Thus the aim of this study was to evaluate the effect of the encapsulation of UA into liposomes, as well as its combination with antituberculous agents such as rifampicin (RIF) and isoniazid (INH) against MDR-TB clinical isolates. The in vitro antimycobacterial activity of UA-loaded liposomes (UA-Lipo) against MDR-TB was assessed by the microdilution method. The in vitro interaction of UA with antituberculous agents was carried out using checkerboard method. Minimal inhibitory concentration values were 31.25 and 0.98 µg/mL for UA and UA-Lipo, respectively. The results exhibited a synergistic interaction between RIF and UA [fractional inhibitory concentration index (FICI) = 0.31] or UA-Lipo (FICI = 0.28). Regarding INH, the combination of UA or UA-Lipo revealed no marked effect (FICI = 1.30-2.50). The UA-Lipo may be used as a dosage form to improve the antimycobacterial activity of RIF, a first-line drug for the treatment of infections caused by Mtb.
Resumo:
The hydrophilic drug sodium alendronate was encapsulated in blended microparticles of Eudragit® S100 and Methocel® F4M or Methocel® K100LV. Both formulations prepared by spray-drying showed spherical collapsed shape and smooth surface, encapsulation efficiencies of 85 and 82% and mean diameters of 11.7 and 8.4 µm, respectively. At pH 1.2, in vitro dissolution studies showed good gastro-resistance for both formulations. At pH 6.8, the sodium alendronate release from the microparticles was delayed and was controlled by Fickian diffusion. In conclusion, the prepared microparticles showed high encapsulation efficiency of sodium alendronate presenting gastro-resistance and sustained release suitable for its oral administration.
Resumo:
The aims of this study were to formulate calcium-alginate beads containing glibenclamide, characterize the resulting microparticles, evaluate the release characteristics of this type of delivery system in an in vitro dissolution test, and compare it with two commercially available trademarks (Daonil® and Glibetab®). We obtained glibenclamide loaded calcium-alginate beads with a rough surface and a particle size between 150-200 µm. For the in vitro dissolution test Daonil® at 45 min showed a Q > 70%, whereas Glibetab® and glibenclamide calcium-alginate beads a Q < 70%; in spite of that glibenclamide calcium-alginate beads showed significant release properties.
Resumo:
Nanoparticles were produced by solvent emulsification evaporation method with the following characteristics: nanometric size (238 ± 3 nm), narrow polydispersity index (0.11), negative zeta potential (-15.1 mV), good yield of the process (73 ± 1.5%), excellent encapsulation efficiency (81.3 ± 4.2%) and spherical shape. X-rays diffraction demonstrated the loss of drug crystallinity after encapsulation; however, the profile of the diffractograms of the poly-ε-caprolactone (PCL) nanoparticles was kept. Differential scanning calorimetry thermograms, correspondingly, exhibited the loss of drug melting peak and the increasing of the melting point of the PCL nanoparticles, evidencing an interaction drug-polymer. Naproxen release was low and sustained obeying the Higuchi´s kinetic. The results show that nanoparticles are promising sustained release system to the naproxen.
Resumo:
We studied the synergistic effect of glucose and prolactin (PRL) on insulin secretion and GLUT2 expression in cultured neonatal rat islets. After 7 days in culture, basal insulin secretion (2.8 mM glucose) was similar in control and PRL-treated islets (1.84 ± 0.06% and 2.08 ± 0.07% of the islet insulin content, respectively). At 5.6 and 22 mM glucose, insulin secretion was significantly higher in PRL-treated than in control islets, achieving 1.38 ± 0.15% and 3.09 ± 0.21% of the islet insulin content in control and 2.43 ± 0.16% and 4.31 ± 0.24% of the islet insulin content in PRL-treated islets, respectively. The expression of the glucose transporter GLUT2 in B-cell membranes was dose-dependently increased by exposure of the islet to increasing glucose concentrations. This effect was potentiated in islets cultured for 7 days in the presence of 2 µg/ml PRL. At 5.6 and 10 mM glucose, the increase in GLUT2 expression in PRL-treated islets was 75% and 150% higher than that registered in the respective control. The data presented here indicate that insulin secretion, induced by different concentrations of glucose, correlates well with the expression of the B-cell-specific glucose transporter GLUT2 in pancreatic islets
Resumo:
Nitric oxide synthase activity was measured in Langerhans islets isolated from control and streptozotocin diabetic rats. The activity of the enzyme was linear up to 150 µg of protein from control rats and was optimal at 0.1 µM calcium, when it was measured after 45 min of incubation at 37oC in the presence of 200 µM arginine. Specific activity of the enzyme was 25 x 10-4 nmol [3H]citrulline 45 min-1 mg protein-1. Streptozotocin diabetic rats exhibited less enzyme activity both in total pancreas homogenate and in isolated Langerhans islets when compared to control animals. Nitric oxide synthase activity measured in control and diabetic rats 15 days after the last streptozotocin injection in the second group of animals corresponded only to a constitutive enzyme since it was not inhibited by aminoguanidine in any of the mentioned groups. Hyperglycemia in diabetic rats may be the consequence of impaired insulin release caused at least in part by reduced positive modulation mediated by constitutive nitric oxide synthase activity, which was dramatically reduced in islets severely damaged after streptozotocin treatment.
Resumo:
The antimonial drug, meglumine antimoniate, was successfully encapsulated in dehydration-rehydration vesicles and in freeze-dried empty liposomes (FDELs). High encapsulation efficiencies (from 28 to 58%) and low weight ratios of lipids to encapsulated antimony (from 1:0.15 to 1:0.3) were achieved. These formulations, contrary to those obtained by conventional methods, can be stored as intermediate lyophilized forms and reconstituted just before use. The efficacy of FDEL-encapsulated meglumine antimoniate was evaluated in hamsters experimentally infected with Leishmania chagasi. A significant reduction of liver parasite burdens was observed in animals treated with this preparation, when compared to control animals treated with empty liposomes. In contrast, free meglumine antimoniate was found to be inefficient when administered at a comparable dose of antimony. This novel liposome-based meglumine antimoniate formulation appears to be promising as a pharmaceutical product for the treatment of visceral leishmaniasis.
Resumo:
In the 70's, pancreatic islet transplantation arose as an attractive alternative to restore normoglycemia; however, the scarcity of donors and difficulties with allotransplants, even under immunosuppressive treatment, greatly hampered the use of this alternative. Several materials and devices have been developed to circumvent the problem of islet rejection by the recipient, but, so far, none has proved to be totally effective. A major barrier to transpose is the highly organized islet architecture and its physical and chemical setting in the pancreatic parenchyma. In order to tackle this problem, we assembled a multidisciplinary team that has been working towards setting up the Human Pancreatic Islets Unit at the Chemistry Institute of the University of São Paulo, to collect and process pancreas from human donors, upon consent, in order to produce purified, viable and functional islets to be used in transplants. Collaboration with the private enterprise has allowed access to the latest developed biomaterials for islet encapsulation and immunoisolation. Reasoning that the natural islet microenvironment should be mimicked for optimum viability and function, we set out to isolate extracellular matrix components from human pancreas, not only for analytical purposes, but also to be used as supplementary components of encapsulating materials. A protocol was designed to routinely culture different pancreatic tissues (islets, parenchyma and ducts) in the presence of several pancreatic extracellular matrix components and peptide growth factors to enrich the beta cell population in vitro before transplantation into patients. In addition to representing a therapeutic promise, this initiative is an example of productive partnership between the medical and scientific sectors of the university and private enterprises.
Resumo:
Insulin-dependent diabetes mellitus is caused by autoimmune destruction of pancreatic ß cells. Non-obese diabetic (NOD) mice spontaneously develop diabetes similar to the human disease. Cytokines produced by islet-infiltrating mononuclear cells may be directly cytotoxic and can be involved in islet destruction coordinated by CD4+ and CD8+ cells. We utilized a semiquantitative RT-PCR assay to analyze in vitro the mRNA expression of TNF-alpha and IFN-gamma cytokine genes in isolated islets (N = 100) and spleen cells (5 x 10(5) cells) from female NOD mice during the development of diabetes and from female CBA-j mice as a related control strain that does not develop diabetes. Cytokine mRNAs were measured at 2, 4, 8, 14 and 28 weeks of age from the onset of insulitis to the development of overt diabetes. An increase in IFN-gamma expression in islets was observed for females aged 28 weeks (149 ± 29 arbitrary units (AU), P<0.05, Student t-test) with advanced destructive insulitis when compared with CBA-j mice, while TNF-alpha was expressed in both NOD and CBA-j female islets at the same level at all ages studied. In contrast, TNF-alpha in spleen was expressed at higher levels in NOD females at 14 weeks (99 ± 8 AU, P<0.05) and 28 weeks (144 ± 17 AU, P<0.05) of age when compared to CBA-j mice. The data suggest that IFN-gamma and TNF-alpha expression in pancreatic islets of female NOD mice is associated with ß cell destruction and overt diabetes.
Resumo:
The aim of this study was to evaluate the response to the implantation of synthetic hydroxyapatite 30% (HAP-91®) in different physical states as dermal filler. Eighteen New Zealand rabbits were used, distributed randomly into two equal groups and then divided into three groups according to the postoperative period at 8, 21 and 49 days. One mL of HAP-91®, fluid and viscous, was implanted in the subcutaneous tissue, 1 cm proximal to the cranial crest of the right scapula. The thickness of the skin was measured before and after implantation and for the following 15 days. Pain sensitivity assessment was conducted, assigning the following scores: 0 - when the animal allowed the touch of the implant area and expressed no signs of pain; 1 - when the animal allowed the touch, but pain reaction occurred, like increase of the respiratory rate or attempt to escape; 2 - when the animal did not allow the touch to the implanted area. At 8, 21 and 49 days, biopsy of the implanted area was performed. No difference was observed between the thickness of the skin (p>0.05) and all animals received a score 0 for soreness. Histological analysis did not reveal any obvious inflammatory process, showing a predominance of mononuclear cells in samples of eight days and tissue organization around the biomaterial with a tendency to encapsulation. The results indicate that HAP-91®, both viscous and fluid, is biocompatible and suitable for dermal filling.
Resumo:
Oxamniquine (OXA) was sucessfully encapsulated in small unilamellar vesicles using a pH gradient method. This procedure led to a high drug encapsulation efficiency (> 85%) at a drug to lipid molar ratio of 1/10. Moreover, these liposomes were found to retain encapsulated OXA efficciently under dialysis conditions at 37º C. Liposome-entrapped OXA (LOXA), OXA, and empty liposomes were tested against Schistosoma mansoni in a murine model. LOXA produced a significant reduction of the worm burden compared to the other preparations, when inoculated by subcutaneous route (s.c.) with 10 mg OXA/kg animal one day before the infection, and 3, 7, and 14 days after. However, LOXA was not effective when given 7 days before, or 35 days after infections. OXA, in the free form, was effective in relation to the untreated group, only when administered 3 days after the infection. Maximum effect of LOXA, with 97% reduction of the parasite number, was observed when the preparation was given s.c.one day before the infection. On the other hand, LOXA inoculated intraperitoneally one day before the infection didnt show any reduction of the parasite count. It can be concluded that LOXA is more effective than OXA for the treatment of experimental schistosomiasis, particularly when administered subcutaneously at a time close to the infection
Resumo:
Reactivity of snails against parasites exhibits a primitive focal reaction, with encapsulation, phagocytosis and destruction of parasite larvae by macrophage-like cells - the hemocytes. This reaction mimics granulomatous inflammation seen in higher animals. However, different from the latter, little is known about the participation of extra-cellular matrix in such snail defense reactions. Normal and Schistosoma mansoni-infected Biomphalaria glabrata of different strains were submitted to cytological, histological, ultrastructural and biochemical methods in order to investigate the behavior of extra-cellular tissues at the site of anti-parasite reactions. In spite of the presence of two cell-types in peripheral hemolymph, only one cell-type was present at the sites of tissue reactions. Although pre-existent collagen and elastic fibers and microfibrils sometimes appeared slightly compressed around focal reactions, no evidences of duplication, synthesis or deposition of connective-tissue extra-cellular components were observed within or around the zones of reactive cell accumulations. Thus, tissue reactions against S. mansoni in the snail B. glabrata appeared exclusively dependent on one specific population of hemocytes.
Resumo:
Lectin-carbohydrate binding may be involved in the recognition of Schistosoma mansoni sporocysts by haemocytes of Biomphalaria; therefore, we tested if this interaction is associated with snail resistance against Schistosoma infection. In vitro data showed that most of the S. mansoni sporocysts cultured with haemocytes from Biomphalaria glabrata BH, a highly susceptible snail strain, had a low number of cells that adhered to their tegument and a low mortality rate. Moreover, the addition of N-acetyl-D-glucosamine (GlcNAc) did not alter this pattern of adherence and mortality. Using haemocytes and haemolymph of Biomphalaria tenagophila Cabo Frio, we observed a high percentage of sporocysts with adherent cells, but complete encapsulation was not detected. Low concentrations of GlcNAc increased haemocyte binding to the sporocysts and mortality, which returned to basal levels with high concentrations of the carbohydrate. In contrast, haemocytes plus haemolymph from B. tenagophila Taim encapsulated cellular adhesion index of level 3 and destroyed over 30% of the S. mansoni sporocysts in culture. Interestingly, the addition of GlcNAc, but not mannose, to the culture medium resulted in the significant inhibition of cellular adhesion to the parasite tegument and the reduction of parasite mortality, suggesting that GlcNAc carbohydrate moieties are important to the recognition of S. mansoni by B. tenagophila Taim.
Resumo:
Nanocomposites obtained by the encapsulation of conducting polymers such as polyaniline and polydiphenylamine in 2H-MoS2 and 1T-TiS2 are synthesized and characterized by X-ray diffraction and infrared spectrophotometry. The synthesis consists in intercalating the layered compound with n-butyllithium and subsequent exfoliation in water and organic solvents. The nanocomposites are obtained by the adsorption of the polymers into the single-layers sulfides and posterior restacking. The X-ray diffraction measurements showed that the organic conducting polymers are encapsulated in mono and bilayers arrangement in a well-ordered fashion to produce single phase compounds.