17 resultados para Intercalation
em Scielo Saúde Pública - SP
Resumo:
No tillage systems significantly influence the soil system, but knowledge about the effects on the mineralogy of tropical and subtropical soils is limited. This study evaluated the long-term effects (26 years) of no-tillage (NT) on aluminum hydroxy-interlayered minerals of a subtropical Oxisol in Southern Brazil (Guarapuava, PR), compared to the same soil under conventional tillage (CT). The clay fraction (< 2 µm) in soil samples of the surface horizons of a field experiment under both management systems was analyzed by X-ray diffraction (XRD) to identify and characterize Al hydroxy-interlayered minerals before and after treatment with sodium citrate to remove intra-layer material. Soil liquid (solution) and solid phases were also characterized. The contents of total organic C, exchangeable cations, P, and the values of extractable acidity and cation exchange capacity as well as electrical conductivity and levels of dissolved organic C, basic cations, aluminum, Si, and sulfur in the soil solution were higher in the NT soil. Under both soil management systems, more than 90 % of the total soluble Al was complexed with organic compounds, with similar Al activity. No significant changes were detected by 2:1 clay mineral XRD analyses in terms of extension or intercalation of Al-hydroxy-polymers in the no-tilled in comparison to the conventionally tilled soil. In both soil management systems, Al and Si activities in the soil solution indicated thermodynamic stability of 2:1 clay minerals with partially occupied by hydroxy-Al, suggesting deceleration in the intercalation process and a tendency of transforming clay minerals from extensive into partial intercalation.
Resumo:
The electrochemical synthesis of a ternary compound obtained by the intercalation of hydrated hexilaminium cations into the layered compound 1T-TiS2 is reported. Two different compounds were detected by cyclovoltammetry and studied by X-ray diffractometry. Models showing the steric arrangement of the hydrated hexilaminium cations into the Van der Waals gaps were proposed.
Resumo:
Nanocomposites obtained by the encapsulation of conducting polymers such as polyaniline and polydiphenylamine in 2H-MoS2 and 1T-TiS2 are synthesized and characterized by X-ray diffraction and infrared spectrophotometry. The synthesis consists in intercalating the layered compound with n-butyllithium and subsequent exfoliation in water and organic solvents. The nanocomposites are obtained by the adsorption of the polymers into the single-layers sulfides and posterior restacking. The X-ray diffraction measurements showed that the organic conducting polymers are encapsulated in mono and bilayers arrangement in a well-ordered fashion to produce single phase compounds.
Resumo:
The aim of this work is to study the electrochromism and the reaction kinetics of lithium electrointercalation in anodic niobium oxide films. The oxide grown in an acid environment by application of an alternating potential shows interference colour (iridescence) and when reduced in lithium perclorate/PC solution, the intercalation of Li+ ions and electrons causes a reversible colour change (electrochromism), characterized here by electrochemical and optical measurements. A model where the reaction kinetics is dominated by diffusion of ionic pairs (Li+, e-) in the oxide film permitted the reproduction of current and absorbance temporal dependence, confirming the relationship between the electrochromic and electrochemical reactions. From the results obtained, a relation was established where the colour change is associated to the reduction of Nb+5 to Nb+4 ions with simultaneous cations injection.
Resumo:
Well-ordered Georgia kaolinite (Kga-1b) obtained from the source Clay Repository of the Clay Minerals Society (USA) was intercalated with urea using grinding procedures. To achieve complete intercalation 20% of urea (in weight) was used, producing Al2Si2O5(OH)4 (N2H4CO)0,86 with an interplanar basal spacing of 1,08nm. After washing with water under ultrasound stirring at 363K, urea was completely removed and kaolinite was partially exfoliated. After drying under air, the material was converted to hydrated kaolinite with the composition Al2Si2O5(OH)4 (H2O)0,64 and an interplanar basal spacing of 0,84nm. In this compound, water molecules positioned between the layers of the silicate can be removed after calcination at 573K, regenerating structurally disordered kaolinite.
Resumo:
The development associated with the research field involving crystalline inorganic lamellar titanium hydrogenphosphate, Ti(HPO4).H2O, synthesized as alpha or gamma forms, is directly linked to the huge number of reactions, that occur inside the free interlamellar space. Two distinguishable well-characterized features such as ion-exchange and intercalation reactions are explored here. From the interactive point of view, the acidic OH centres distributed on the lamella can interact with cations or with basic polar molecules to exchange or to intercalate them. These chemical reactions are normally followed by an expansion of the interlamellar space, proportional to the amount intercalated, reflecting in ion radii or organic molecule size lengths used in ion-exchange or insertion processes, respectively. The effectiveness of the exchange increased when the original matrix has the proton of OH group previously ion-exchanged by an alkaline or an alkylammonium cations. Monoalkyl-, dialkyl- and heterocyclic amines are focused in this revision as clear and elucidative examples of acid-base interactive processes, that come out inside of the well-formed infinite sequence of inorganic lamellar structure.
Resumo:
The aim of this work is to review the chemical and physical properties of layered molybdenum disulfide. The three polymorphic/polytypic modifications of the compound were found, the polytypes 2H (molybdenite) and 3R are semiconductors while the polymorph 1T is an electronic conductor. 2H-MoS2 has several important industrial applications as hydrotreatment catalysts, energy storage devices, solar cells, solid lubricants, among others. When intercalated, the 2H phase changes to a distorted 1T phase, producing unstable intercalation compounds that can be exfoliated in solution, producing single layers and consequently nanocomposites. The direct synthesis of the 1T phase produces stable intercalation compounds. Recently molybdenum disulfide was prepared as nanotubes and fulerene-like structures that bring new insights in the investigation of this important material.
Resumo:
The concepts of dissipation and feedback are contained in the behavior of many natural dynamical systems. They have been used to predict the evolution of populations leading to the formulation of the quadratic logistic equation (QLE). More recently, the QLE has been used to provide a better understanding of physicochemical systems with promising results. Many physical, chemical and biological dynamic phenomena can be understood on the basis of the QLE and this work describes the main aspects of this equation and some recent applications, with emphasis on electrochemical systems. Also, it is illustrated the concept of potential energy as a convenient way of describing the stability of the fixed points of the QLE.
Resumo:
Well-ordered kaolinite from the Brazilian Amazon Region (State of Pará) was initially reacted at 60 °C with a water dimethylsulfoxide mixture. After washing and characterisation, the resulting material was washed several times with methanol and in the final step with water. The water molecules displace the previously dimethylsulfoxide intercalated molecules and two different hydrated kaolinites were obtained. An unstable phase characterized by an interplanar basal distance of 0,996 nm that after drying collapse to the stable 0,844 nm hydrated kaolinite. The dehydration of the sample to disordered kaolinite was accompanied by Powder X-ray Diffractometry, thermal analysis (simultaneous TG and DSC) and FTIR spectroscopy.
Resumo:
A layered matrix, alpha-VOPO4.2H2O was used as host species to produce a VOPO4.dimethylacetamide intercalation compound. The oxovanadium matrix and the synthesized hybrid were characterized by elemental analysis, infrared spectroscopy, thermogravimetry, X-ray diffractometry and SEM microscopy. The X-ray diffraction patterns show that the VOPO4.dimethylacetamide compound is amorphous, but can be turned lamellar after a solubilization-crystallization process. The SEM micrographs obtained for the VOPO4-dimethylacetamide hybrid matrix show that the microstructure of VOPO4.2H2O is changed after reaction, with a delamination of the oxovanadium matrix.
Resumo:
The alpha-zirconium (IV) hydrogenphosphate (alpha-ZrP) has received great attention in the last years due to its properties like ion exchange, intercalation, ionic conductivity and catalytic activity. This work reports a method to produce metallic copper clusters on alpha-ZrP to be used as catalysts in petrochemical processes. It was found that the solids were non-crystalline regardless of the uptake of copper and the reduction. The specific surface area increased as a consequence of the increase of the interlayer distance to accept the copper ions between the layers. During the reduction, big clusters of copper (0,5-11µ) with different sizes and shapes were produced.
Resumo:
The present paper describes the synthesis of crystalline zirconium hydrogen phosphate by direct precipitation and its intercalation with pyridine and n-butylamine. The simple experiment was tested in the undergraduate inorganic chemistry laboratory course for chemistry students at IQ-UNICAMP using inexpensive reagents. The materials were characterized by powder X-ray diffraction and infrared analyses in order to obtain detailed information of the solid structure changes as a result of the intercalation process. Pyridine and n-butylamine are focused in this work as clear and elucidative examples leading to acid-base interactive processes that result in the well-formed infinite sequence of inorganic lamellar structures.
Resumo:
The niobate with formula K4Nb6O17 has a layered structure formed by stacked negative sheets and exchangeable cations in the interlayer region. In this study we discuss some structural aspects related to the ion exchange in layered hexaniobate based on X-ray diffractometry and vibrational Raman spectroscopy data. Hexaniobate has two distinct interlayer regions and the potassium ions of one interlayer in particular are preferably exchanged by other cations, leading to an interstratified material.
Resumo:
The simultaneous use of the specific values of some structural and chemical properties of clay minerals, such as kaolinite, montmorillonite and talc, allows the development of new properties for these materials, especially in relation to the external and internal microcrystal surfaces. These developments are very diversified for montmorillonite, due to the high specific surface area, expansible basal spacings, easy intercalation inside the 2:1 structural layers and a reversible and high cation exchance capacity. The review presents examples of chemical modifications on kaolins, montmorillonites (bentonites) and talcs.
Resumo:
This study aims to prepare biodegradable films from cassava starch, poly (butylene adipate-co-terephthalate) (PBAT), and montmorillonite (MMT) using blow-extrusion process and analyze the effects of different types and concentrations of MMT on the microstructure, physicochemical, and mechanical properties of the resulting films. The films were produced by blending 30% of PBAT with glycerol (17.5%), starch (49.0-52.5%), and four different types of montmorillonite (Cloisite® Na+, 10A, 15A, and 30B) at two different concentrations (1.75% and 3.5%). All the films prepared in this study showed an increase in the basal spacing of MMT layers. In particular, the films with 10A and 30B showed the highest increase in intercalation basal spacing, suggesting the formation of intercalated composites. The addition of nanoclays decreased the elongation of films. The addition of Cloisite® 10A resulted in films with the lowest WVP values and the highest stability to water adsorption under different RH conditions.