156 resultados para Inteligência Artificial

em Scielo Saúde Pública - SP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

O principal objetivo deste artigo é propor um modelo para sistemas de gerenciamento da informação baseado em técnicas de inteligência artificial. O modelo propõe uma arquitetura de sistema especialista para gerenciamento da informação, sugerindo a utilização de um analisador semântico embutido na interface do usuário final. A abordagem enfatiza a dificuldade em se obter informações com precisão e qualidade, para apoiar tomadores de decisões, e a necessidade de prover os usuários finais com mecanismos, poderosos, capazes de analisar, selecionar e direcionar-lhes informações, de acordo com as necessidades e urgências de cada um

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper studies based on Multilayer Perception Artificial Neural Network and Least Square Support Vector Machine (LS-SVM) techniques are applied to determine of the concentration of Soil Organic Matter (SOM). Performances of the techniques are compared. SOM concentrations and spectral data from Mid-Infrared are used as input parameters for both techniques. Multivariate regressions were performed for a set of 1117 spectra of soil samples, with concentrations ranging from 2 to 400 g kg-1. The LS-SVM resulted in a Root Mean Square Error of Prediction of 3.26 g kg-1 that is comparable to the deviation of the Walkley-Black method (2.80 g kg-1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Redes Neurais Artificiais são técnicas computacionais que se utilizam de um modelo matemático capaz de adquirir conhecimentos pela experiência; esse comportamento inteligente da rede provém das interações entre unidades de processamento, denominadas de neurônios artificiais. O objetivo deste trabalho foi criar uma rede neural capaz de prever a estabilidade de óleos vegetais, a partir de dados de suas composições químicas, visando um modelo para a previsão da shelf-life de óleos vegetais, tendo como parâmetros apenas dados de suas composições químicas. Os primeiros passos do processo de desenvolvimento da rede consistiram na coleta de dados relativos ao problema e sua separação em um conjunto de treinamento e outro de testes. Estes conjuntos apresentaram como variáveis dados de composição química, que incluíram os valores totais em ácidos graxos, fenóis, tocoferóis e a composição individual em ácidos graxos. O passo seguinte foi a execução do treinamento, onde o padrão de entrada apresentado à rede como parâmetro de estabilidade foi o índice de peróxido, determinado experimentalmente por um período de 16 dias de armazenagem na ausência de luz, a 65ºC. Após o treinamento foi testada a capacidade de previsão adquirida pela rede, em função do parâmetro de estabilidade adotado, mas com um novo grupo de óleos. Seguindo o teste, foi determinada a correlação linear entre os valores de estabilidade previstos pela rede e aqueles determinados experimentalmente. Com os resultados obtidos, pode-se confirmar a viabilidade de previsão da estabilidade de óleos vegetais pela rede neural, a partir de dados de sua composição química, utilizando como parâmetro de estabilidade o índice de peróxido.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este artigo é uma tentativa de delinear as principais características da pesquisa numa nova área de estudos a chamada Inteligência Artificial (AI). Os itens 1 e 2 constituem um rápido histórico da AI e seus pressupostos básicos. O item 3 trata da teoria de resolução de problemas, desenvolvida por A. Newell e H. Simon. O item 4 procura mostrar a relevância da AI para a Filosofia, em especial para a filosofia da Mente e para a Teoria do Conhecimento.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O artigo aborda problemas filosóficos relativos à natureza da intencionalidade e da representação mental. A primeira parte apresenta um breve histórico dos problemas, percorrendo rapidamente alguns episódios da filosofia clássica e da filosofia contemporânea. A segunda parte examina o Chinese Room Argument (Argumento do Quarto do Chinês) formulado por J. Searle. A terceira parte desenvolve alguns argumentos visando mostrar a inadequação do modelo funcionalista de mente na construção de robots. A conclusão (quarta parte) aponta algumas alternativas ao modelo funcionalista tradicional, como, por exemplo, o conexionismo.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

O artigo apresenta uma revisão de literatura mostrando o estado-da-arte conceitual na disciplina corporativa denominada inteligência competitiva (IC), sob um ponto de vista da ciência da informação (CI), explorando desenvolvimentos e experiências recentes. Embora já presente nas sociedades da Antiguidade, objeto de estudo de soberanos, pensadores e guerreiros, a inteligência competitiva (IC), inspirada nas atividades de inteligência militar, constitui tema bastante atual no mundo corporativo contemporâneo de competição global, com renovado interesse no mercado e na academia. Como o tema apresenta evidentes conexões epistemológicas com gestão da informação (GI) e gestão do conhecimento (GC), o texto busca mostrar como isso ocorre e as relações de causa e efeito entre as várias camadas de atividades vinculadas ao desenvolvimento de inteligência para tomada de decisão nas organizações inspirado no framework de Liebowitz (2006) baseado numa estrutura de cebola. Conceitos correlatos são também explorados, como o próprio conceito de GC, numa praxis composta de disciplinas corporativas conhecidas como aprendizado organizacional, gestão do capital intelectual ou capital humano e inteligência organizacional. Conceitos novos correlatos à inteligência competitiva são acrescentados ao conjunto intelligentsia galore de Liebowitz (2006), como capital estrutural, capital de clientela, capital competitivo e inteligência estratégica (IE).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJETIVO: Identificar, com o auxílio de técnicas computacionais, regras referentes às condições do ambiente físico para a classificação de microáreas de risco. MÉTODOS: Pesquisa exploratória, desenvolvida na cidade de Curitiba, PR, em 2007, dividida em três etapas: identificação de atributos para classificar uma microárea; construção de uma base de dados; e aplicação do processo de descoberta de conhecimento em base de dados, por meio da aplicação de mineração de dados. O conjunto de atributos envolveu as condições de infra- estrutura, hidrografia, solo, área de lazer, características da comunidade e existência de vetores. A base de dados foi construída com dados obtidos em entrevistas com agentes comunitários de saúde, sendo utilizado um questionário com questões fechadas, elaborado com os atributos essenciais, selecionados por especialistas. RESULTADOS: Foram identificados 49 atributos, sendo 41 essenciais e oito irrelevantes. Foram obtidas 68 regras com a mineração de dados, as quais foram analisadas sob a perspectiva de desempenho e qualidade e divididas em dois conjuntos: as inconsistentes e as que confirmam o conhecimento de especialistas. A comparação entre os conjuntos mostrou que as regras que confirmavam o conhecimento, apesar de terem desempenho computacional inferior, foram consideradas mais interessantes. CONCLUSÕES: A mineração de dados ofereceu um conjunto de regras úteis e compreensíveis, capazes de caracterizar microáreas, classificando-as quanto ao grau do risco, com base em características do ambiente físico. A utilização das regras propostas permite que a classificação de uma microárea possa ser realizada de forma mais rápida, menos subjetiva, mantendo um padrão entre as equipes de saúde, superando a influência da percepção particular de cada componente da equipe.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

No estudo aqui apresentado, aplicou-se um modelo de rede neural multicamadas para o apreçamento de calls sobre taxa de câmbio R$/US$, negociadas na Bolsa de Valores, Mercadorias & Futuros de São Paulo (BM&FBovespa), para o período de janeiro de 2004 a dezembro de 2007. A partir dos preços efetivamente praticados no mercado, comparou-se o desempenho entre essa técnica e o modelo de Black, utilizando-se métricas usuais de erro e testes estatísticos. Os resultados obtidos revelaram, em geral, a melhor adequação do modelo de inteligência artificial, em comparação ao modelo de Black, nos diferentes graus de moneyness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

No presente estudo, foi realizada uma avaliação de diferentes variáveis ambientais no mapeamento digital de solos em uma região no norte do Estado de Minas Gerais, utilizando redes neurais artificiais (RNA). Os atributos do terreno declividade e índice topográfico combinado (CTI), derivados de um modelo digital de elevação, três bandas do sensor Quickbird e um mapa de litologia foram combinados, e a importância de cada variável para discriminação das unidades de mapeamento foi avaliada. O simulador de redes neurais utilizado foi o "Java Neural Network Simulator", e o algoritmo de aprendizado, o "backpropagation". Para cada conjunto testado, foi selecionada uma RNA para a predição das unidades de mapeamento; os mapas gerados por esses conjuntos foram comparados com um mapa de solos produzido com o método convencional, para determinação da concordância entre as classificações. Essa comparação mostrou que o mapa produzido com o uso de todas as variáveis ambientais (declividade, índice CTI, bandas 1, 2 e 3 do Quickbird e litologia) obteve desempenho superior (67,4 % de concordância) ao dos mapas produzidos pelos demais conjuntos de variáveis. Das variáveis utilizadas, a declividade foi a que contribuiu com maior peso, pois, quando suprimida da análise, os resultados da concordância foram os mais baixos (33,7 %). Os resultados demonstraram que a abordagem utilizada pode contribuir para superar alguns dos problemas do mapeamento de solos no Brasil, especialmente em escalas maiores que 1:25.000, tornando sua execução mais rápida e mais barata, sobretudo se houver disponibilidade de dados de sensores remotos de alta resolução espacial a custos mais baixos e facilidade de obtenção dos atributos do terreno nos sistemas de informação geográfica (SIG).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Técnicas de mapeamento digital podem contribuir para agilizar a realização de levantamentos pedológicos detalhados. Objetivou-se com este trabalho obter um mapa digital de solos (MDS) com uso de redes neurais artificiais (RNA), utilizando correlações entre unidades de mapeamento (UM) e covariáveis ambientais. A área utilizada compreendeu aproximadamente 12.000 ha localizados no município de Barra Bonita, SP. A partir do resultado de uma análise de agrupamento das covariáveis ambientais, foram escolhidas cinco áreas de referência para realizar o mapeamento convencional. As UM identificadas subsidiaram a aplicação da técnica de RNA. Utilizaram-se o simulador de redes neurais JavaNNS e o algoritmo de aprendizado backpropagation. Pontos de referência foram coletados para avaliar o desempenho do mapa digital produzido. A posição na paisagem e o material de origem subjacente foram determinantes para o reconhecimento dos delineamentos das UM. Houve boa concordância entre as UM delineadas pelo MDS e pelo método convencional. A comparação entre os pontos de referência e o mapa de solos digital evidenciou exatidão de 72 %. O uso da abordagem MDS utilizada pode contribuir para diminuir a falta de informações semidetalhadas de solos em locais ainda não mapeados, tomando-se como base informações pedológicas obtidas de áreas de referência adjacentes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Redes neurais constituem um campo da ciência da computação ligado à inteligência artificial, buscando implementar modelos matemáticos que se assemelhem às estruturas neurais biológicas. Nesse sentido, apresentam capacidade de adaptar os seus parâmetros como resultado da interação com o meio externo, melhorando gradativamente o seu desempenho na solução de um determinado problema. A utilização de redes neurais em sistemas computacionais de recuperação de informação permite atribuir um caráter dinâmico a tais sistemas, dado que as representações dos documentos podem ser reavaliadas e alteradas de acordo com a especificação de relevância atribuída pelos usuários aos documentos recuperados. O presente trabalho apresenta as principais iniciativas de se aplicarem os conceitos de redes neurais aos sistemas de recuperação de informação e avalia sua aplicabilidade em grandes bases documentais, como é o caso da Web.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O artigo relata um experimento de simulação computacional de um sistema de recuperação da informação composto por uma base de índices textuais de uma amostra de documentos, um software de rede neural artificial implementando conceitos da Teoria da Ressonância Adaptativa, para automação do processo de ordenação e apresentação de resultados, e um usuário humano interagindo com o sistema em processos de consulta. O objetivo do experimento foi demonstrar (i) a utilidade das redes neurais de Carpenter e Grossberg (1988) baseadas nessa teoria e (ii) o poder de resolução semântica com índices sintagmáticos da abordagem SiRILiCO proposta por Gottschalg-Duque (2005), para o qual um sintagma nominal ou proposição é uma unidade linguística constituda de sentido maior que o significado de uma palavra e menor que uma narrativa ou uma teoria. O experimento demonstrou a eficácia e a eficiência de um sistema de recuperação da informação combinando esses recursos, concluindo-se que um ambiente computacional dessa natureza terá capacidade de clusterização (agrupamento) variável on-line com entradas e aprendizado contínuos no modo não supervisionado, sem necessidade de treinamento em modo batch (off-line), para responder a consultas de usuários em redes de computadores com desempenho promissor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Resumo: O objetivo deste trabalho foi verificar a concordância entre as redes neurais artificiais (RNAs) e o método de Eberhart & Russel na identificação de genótipos de feijão-caupi (Vigna unguiculata) com alta adaptabilidade e estabilidade fenotípicas. Utilizou-se o delineamento experimental de blocos ao acaso com quatro repetições. Os tratamentos consistiram de 18 linhagens experimentais e duas cultivares de feijão-caupi. Foram conduzidos quatro ensaios de valor de cultivo e uso nos municípios de Aquidauana, Chapadão do Sul e Dourados, no estado do Mato Grosso do Sul. Os dados de produtividade de grãos foram submetidos às análises de variância individual e conjunta. Em seguida, os dados foram submetidos às análises de adaptabilidade e estabilidade por meio dos métodos de Eberhart & Russell e de RNAs. Houve elevada concordância entre os métodos avaliados quanto à discriminação da adaptabilidade fenotípica dos genótipos de feijão-caupi semiprostrado, o que indica que as RNAs podem ser utilizadas em programas de melhoramento genético. Em ambos os métodos avaliados, os genótipos BRS Xiquexique, TE97-304G-12 e MNC99-542F-5 são recomendados para ambientes desfavoráveis, gerais e favoráveis, respectivamente, por apresentarem produtividade de grãos acima da média geral dos ambientes e alta estabilidade fenotípica.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vários desenvolvimentos tecnológicos estão convergindo de forma a aumentar a influência da área de imagens nas pesquisas biomédicas e na medicina clínica. Muitos pesquisadores têm trabalhado no desenvolvimento de sistemas computadorizados para detecção automatizada e quantificação de anormalidades em imagens radiológicas. Estes sistemas são dedicados ao diagnóstico auxiliado por computador. Este artigo discute os conceitos básicos relacionados ao diagnóstico auxiliado por computador e apresenta uma revisão bibliográfica sobre o assunto.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this paper was to evaluate the potential of neural networks (NN) as an alternative method to the basic epidemiological approach to describe epidemics of coffee rust. The NN was developed from the intensities of coffee (Coffea arabica) rust along with the climatic variables collected in Lavras-MG between 13 February 1998 and 20 April 2001. The NN was built with climatic variables that were either selected in a stepwise regression analysis or by the Braincel® system, software for NN building. Fifty-nine networks and 26 regression models were tested. The best models were selected based on small values of the mean square deviation (MSD) and of the mean prediction error (MPE). For the regression models, the highest coefficients of determination (R²) were used. The best model developed with neural networks had an MSD of 4.36 and an MPE of 2.43%. This model used the variables of minimum temperature, production, relative humidity of the air, and irradiance 30 days before the evaluation of disease. The best regression model was developed from 29 selected climatic variables in the network. The summary statistics for this model were: MPE=6.58%, MSE=4.36, and R²=0.80. The elaborated neural networks from a time series also were evaluated to describe the epidemic. The incidence of coffee rust at four previous fortnights resulted in a model with MPE=4.72% and an MSD=3.95.