22 resultados para Inner Cell Mass
em Scielo Saúde Pública - SP
Resumo:
Embryonic stem cells are totipotent cells derived from the inner cell mass of blastocysts. Recently, the development of appropriate culture conditions for the differentiation of these cells into specific cell types has permitted their use as potential therapeutic agents for several diseases. In addition, manipulation of their genome in vitro allows the creation of animal models of human genetic diseases and for the study of gene function in vivo. We report the establishment of new lines of murine embryonic stem cells from preimplantation stage embryos of 129/Sv mice. Most of these cells had a normal karyotype and an XY sex chromosome composition. The pluripotent properties of the cell lines obtained were analyzed on the basis of their alkaline phosphatase activity and their capacity to form complex embryoid bodies with rhythmically contracting cardiomyocytes. Two lines, USP-1 and USP-3, with the best in vitro characteristics of pluripotency were used in chimera-generating experiments. The capacity to contribute to the germ line was demonstrated by the USP-1 cell line. This cell line is currently being used to generate mouse models of human diseases.
Resumo:
A low-protein diet leads to functional and structural pancreatic islet alterations, including islet hypotrophy. Insulin-signaling pathways are involved in several adaptive responses by pancreatic islets. We determined the levels of some insulin-signaling proteins related to pancreatic islet function and growth in malnourished rats. Adult male Wistar rats (N = 20 per group) were fed a 17% protein (normal-protein diet; NP) or 6% protein (low-protein diet; LP), for 8 weeks. At the end of this period, blood glucose and serum insulin and albumin levels were measured. The morphometric parameters of the endocrine pancreas and the content of some proteins in islet lysates were determined. The β-cell mass was significantly reduced (≅65%) in normoglycemic but hypoinsulinemic LP rats compared to NP rats. Associated with these alterations, a significant 30% reduction in insulin receptor substrate-1 and a 70% increase in insulin receptor substrate-2 protein content were observed in LP islets compared to NP islets. The phosphorylated serine-threonine protein kinase (pAkt)/Akt protein ratio was similar in LP and NP islets. The phosphorylated forkhead-O1 (pFoxO1)/FoxO1 protein ratio was decreased by 43% in LP islets compared to NP islets (P < 0.05). Finally, the ratio of phosphorylated-extracellular signal-related kinase 1/2 (pErk1/2) to total Erk1/2 protein levels was decreased by 71% in LP islets compared to NP islets (P < 0.05). Therefore, the reduced β-cell mass observed in LP rats is associated with the reduction of phosphorylation in mitogenic-related signals, FoxO1 and Erk proteins. The cause/effect basis of this association remains to be determined.
Resumo:
Diabetes mellitus represents a serious public health problem owing to its global prevalence in the last decade. The causes of this metabolic disease include dysfunction and/or insufficient number of β cells. Existing diabetes mellitus treatments do not reverse or control the disease. Therefore, β-cell mass restoration might be a promising treatment. Several restoration approaches have been developed: inducing the proliferation of remaining insulin-producing cells, de novo islet formation from pancreatic progenitor cells (neogenesis), and converting non-β cells within the pancreas to β cells (transdifferentiation) are the most direct, simple, and least invasive ways to increase β-cell mass. However, their clinical significance is yet to be determined. Hypothetically, β cells or islet transplantation methods might be curative strategies for diabetes mellitus; however, the scarcity of donors limits the clinical application of these approaches. Thus, alternative cell sources for β-cell replacement could include embryonic stem cells, induced pluripotent stem cells, and mesenchymal stem cells. However, most differentiated cells obtained using these techniques are functionally immature and show poor glucose-stimulated insulin secretion compared with native β cells. Currently, their clinical use is still hampered by ethical issues and the risk of tumor development post transplantation. In this review, we briefly summarize the current knowledge of mouse pancreas organogenesis, morphogenesis, and maturation, including the molecular mechanisms involved. We then discuss two possible approaches of β-cell mass restoration for diabetes mellitus therapy: β-cell regeneration and β-cell replacement. We critically analyze each strategy with respect to the accessibility of the cells, potential risk to patients, and possible clinical outcomes.
Resumo:
Type 1 diabetes mellitus results from a cell-mediated autoimmune attack against pancreatic ß-cells. Traditional treatments involve numerous daily insulin dosages/injections and rigorous glucose control. Many efforts toward the identification of ß-cell precursors have been made not only with the aim of understanding the physiology of islet regeneration, but also as an alternative way to produce ß-cells to be used in protocols of islet transplantation. In this review, we summarize the most recent studies related to precursor cells implicated in the regeneration process. These include embryonic stem cells, pancreas-derived multipotent precursors, pancreatic ductal cells, hematopoietic stem cells, mesenchymal stem cells, hepatic oval cells, and mature ß-cells. There is controversial evidence of the potential of these cell sources to regenerate ß-cell mass in diabetic patients. However, clinical trials using embryonic stem cells, umbilical cord blood or adult bone marrow stem cells are under way. The results of various immunosuppressive regimens aiming at blocking autoimmunity against pancreatic ß-cells and promoting ß-cell preservation are also analyzed. Most of these regimens provide transient and partial effect on insulin requirements, but new regimens are beginning to be tested. Our own clinical trial combines a high dose immunosuppression with mobilized peripheral blood hematopoietic stem cell transplantation in early-onset type 1 diabetes mellitus.
Resumo:
Recent advances have raised hope that transplantation of adherent somatic cells could provide dramatic new therapies for various diseases. However, current methods for transplanting adherent somatic cells are not efficient enough for therapeutic applications. Here, we report the development of a novel method to generate quasi-natural cell blocks for high-efficiency transplantation of adherent somatic cells. The blocks were created by providing a unique environment in which cultured cells generated their own extracellular matrix. Initially, stromal cells isolated from mice were expanded in vitro in liquid cell culture medium followed by transferring the cells into a hydrogel shell. After incubation for 1 day with mechanical agitation, the encapsulated cell mass was perforated with a thin needle and then incubated for an additional 6 days to form a quasi-natural cell block. Allograft transplantation of the cell block into C57BL/6 mice resulted in perfect adaptation of the allograft and complete integration into the tissue of the recipient. This method could be widely applied for repairing damaged cells or tissues, stem cell transplantation, ex vivo gene therapy, or plastic surgery.
Resumo:
Lytic enzymes such as beta-1,3 glucanases, proteases and chitinases are able to hydrolyse, respectively, beta-1,3 glucans, mannoproteins and chitin, as well as the cell walls of many yeast species. Lytic enzymes are useful in a great variety of applications including the preparation of protoplasts; the extraction of proteins, enzymes, pigments and functional carbohydrates; pre-treatment for the mechanical rupture of cells; degradation of residual yeast cell mass for the preparation of animal feed; analysis of the yeast cell wall structure and composition; study of the yeast cell wall synthesis and the control of pathogenic fungi. This review presents the most important aspects with respect to lytic enzymes, especially their production, purification, cloning and application.
Resumo:
Squamous anal cell carcinoma frequency has been changing during the last decades. It was a rare disease in the past with 0.2 cases per 100,000 inhabitants in Denmark before the 60’s and 0.5 per 100,000 in the United States of America (USA) in 1973. Currently these figures have risen to a 1.00 / 100,000 ratio in accordance with the public records in the USA. Although the incidence in the general population can still be considered low, regardless of having doubled during the past 30 years, some specific groups in the population seem to have a higher level of risk, with a ratio of 70 ocurrences per each group of 100,000 individuals. The relationship between infections caused by oncogenic types of human papillomavirus and the similarity with cervical squamous cell carcinoma lead us to believe that screening techniques similar to the ones used as from the 40’s aiming the control of the cervical carcinoma, such as Papanicolaou smear (anal cytology) and colposcopy (high resolution anoscopy), may be effective on anal cancer prevention in those specific groups, or at least, to its early diagnosis. This article presents the techniques for tracking these early anal cancer lesions justifying them as a Public Health point of view.
Resumo:
The ovule of Tabebuia pulcherrima is anatropous, unitegmic and tenuinucellate. The nucellus shows a trizonate structural organization. The integument is initiated by periclinal divisions in the dermal layer (zone I), around the base of the archesporium. Subsequently, cells derived from the subdermal layer (zone II) start to push the dermal cells, so that they shift toward the micropylar region. The archesporial cell differentiates directly into the megaspore mother cell, undergoes meiosis, and originates a linear tetrad of megaspores. The mature embryo sac mother cell is elongated, possess a conspicuous central nucleus, and a characteristic bipolar vacuome with fibrous-granulated content. The inner cell layers of the integument differentiate into an amyloplast-rich endothelium. Patterns of callose deposition in the tetrad and selection of the functional megaspore, as well as the taxonomic value of some characters are discussed.
Resumo:
Our objective was to determine if automated peritoneal dialysis (APD) leads to changes in nutritional parameters of patients treated by continuous ambulatory peritoneal dialysis (CAPD). Twenty-six patients (15 males; 50.5 ± 14.3 years) were evaluated during CAPD while training for APD and after 3 and 6 months of APD. Body fat was assessed by the sum of skinfold thickness and the other body compartments were assessed by bioelectrical impedance. During the 6-month follow-up, 12 patients gained more than 1 kg (GW group), 8 patients lost more than 1 kg (LW group), and 6 patients maintained body weight (MW group). Except for length on dialysis that was longer for the LW group compared with the GW group, no other differences were found between the groups at baseline. After 6 months on APD, the LW group had a reduction in body fat (24.5 ± 7.7 vs 22.1 ± 7.3 kg; P = 0.01), body cell mass (22.6 ± 6.2 vs 21.6 ± 5.8 kg, P = 0.02) and phase angle (5.4 ± 0.9 vs 5.1 ± 0.8 degrees, P = 0.004). In the GW group, body fat (25 ± 7.6 vs 27.2 ± 7.6 kg, P = 0.001) and body cell mass (20.1 ± 3.9 vs 20.8 ± 4.0 kg, P = 0.05) were increased. In the present study, different patterns of change in body composition were found. The length of previous dialysis treatment seems to be the most important factor in determining these nutritional modifications.
Resumo:
The parasympathetic nervous system is important for β-cell secretion and mass regulation. Here, we characterized involvement of the vagus nerve in pancreatic β-cell morphofunctional regulation and body nutrient homeostasis in 90-day-old monosodium glutamate (MSG)-obese rats. Male newborn Wistar rats received MSG (4 g/kg body weight) or saline [control (CTL) group] during the first 5 days of life. At 30 days of age, both groups of rats were submitted to sham-surgery (CTL and MSG groups) or subdiaphragmatic vagotomy (Cvag and Mvag groups). The 90-day-old MSG rats presented obesity, hyperinsulinemia, insulin resistance, and hypertriglyceridemia. Their pancreatic islets hypersecreted insulin in response to glucose but did not increase insulin release upon carbachol (Cch) stimulus, despite a higher intracellular Ca2+ mobilization. Furthermore, while the pancreas weight was 34% lower in MSG rats, no alteration in islet and β-cell mass was observed. However, in the MSG pancreas, increases of 51% and 55% were observed in the total islet and β-cell area/pancreas section, respectively. Also, the β-cell number per β-cell area was 19% higher in MSG rat pancreas than in CTL pancreas. Vagotomy prevented obesity, reducing 25% of body fat stores and ameliorated glucose homeostasis in Mvag rats. Mvag islets demonstrated partially reduced insulin secretion in response to 11.1 mM glucose and presented normalization of Cch-induced Ca2+ mobilization and insulin release. All morphometric parameters were similar among Mvag and CTL rat pancreases. Therefore, the higher insulin release in MSG rats was associated with greater β-cell/islet numbers and not due to hypertrophy. Vagotomy improved whole body nutrient homeostasis and endocrine pancreatic morphofunction in Mvag rats.
Resumo:
INTRODUCTION: Different serum levels of the IgG/IgE for Paracoccidioides brasiliensis high mass molecular (hMM) fraction (~366kDa) in the acute and chronic forms of the disease have been reported. Considering the nonexistence of hMM fraction investigation involving clinical isolates of P. brasiliensis, the present study aimed to investigate the presence of the hMM fraction (~366kDa) in cell free antigens (CFA) from P. brasiliensis clinical isolates. METHODS: CFA from 10 clinical isolates and a reference strain (Pb18) were submitted to SDS-polyacrylamide gel electrophoresis (SDS-PAGE) followed by gel image capturing and densitometer analysis. Additionally, CFA from 20 isolates and Pb18 were analyzed by capture ELISA (cELISA) using polyclonal (polAb) or monoclonal (mAb) antibodies to the hMM fraction. RESULTS: The presence of the hMM component was observed in CFA of all samples analyzed by SDS-PAGE/densitometry and by cELISA. In addition, Pearson's correlation test demonstrated stronger coefficients between hMM fraction levels using pAb and mAb (R = 0.853) in cELISA. CONCLUSIONS: The soluble hMM fraction was present in all the P. brasiliensis clinical isolates analyzed and the reference strain Pb18, which could be used as a source of this antigen. The work also introduces for first time, the cELISA method for P. brasiliensis hMM fraction detection. Analysis also suggests that detection is viable using polAb or mAb and this methodology may be useful for future investigation of the soluble hMM fraction (~366kDa) in sera from PCM patients.
Resumo:
INTRODUCTION: During histoplasmosis, Histoplasma capsulatum soluble antigens (CFAg) can be naturally released by yeast cells. Because CFAg can be specifically targeted during infection, in the present study we investigated CFAg release in experimental murine histoplasmosis, and evaluated the host humoral immune response against high-molecular-mass antigens (hMMAg. >150 kDa), the more immunogenic CFAg fraction. METHODS: Mice were infected with 2.2x10(4) H. capsulatum IMT/HC128 yeast cells. The soluble CFAg, IgG anti-CFAg, IgG anti-hMMAg, and IgG-hMMAg circulating immune complexes (CIC) levels were determined by enzymelinked immunosorbent assay, at days 0, 7, 14, and 28 post-infection. RESULTS: We observed a progressive increase in circulating levels of CFAg, IgG anti-CFAg, IgG anti-hMMAg, and IgG-hMMAg CIC after H. capsulatum infection. The hMMAg showed a high percentage of carbohydrates and at least two main immunogenic components. CONCLUSIONS: We verified for the first time that hMMAg from H. capsulatum IMT/HC128 strain induce humoral immune response and lead to CIC formation during experimental histoplasmosis.
Resumo:
Introduction Even with current highly active antiretroviral therapy, individuals with AIDS continue to exhibit important nutritional deficits and reduced levels of albumin and hemoglobin, which may be directly related to their cluster of differentiation 4 (CD4) cell counts. The aim of this study was to characterize the nutritional status of individuals with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) and relate the findings to the albumin level, hemoglobin level and CD4 cell count. Methods Patients over 20 years of age with AIDS who were hospitalized in a university hospital and were receiving antiretroviral therapy were studied with regard to clinical, anthropometric, biochemical and sociodemographic characteristics. Body mass index, percentage of weight loss, arm circumference, triceps skinfold and arm muscle circumference were analyzed. Data on albumin, hemoglobin, hematocrit and CD4 cell count were obtained from patient charts. Statistical analysis was performed using Fisher's exact test, Student's t-test for independent variables and the Mann-Whitney U-test. The level of significance was set to 0.05 (α = 5%). Statistical analysis was performed using Statistical Package for the Social Sciences (SPSS) 17.0 software for Windows. Results Of the 50 patients evaluated, 70% were male. The prevalence of malnutrition was higher when the definition was based on arm circumference and triceps skinfold measurement. The concentrations of all biochemical variables were significantly lower among patients with a body mass index of less than 18.5kg/m2. The CD4 cell count, albumin, hemoglobin and hematocrit anthropometric measures were directly related to each other. Conclusions These findings underscore the importance of nutritional follow-up for underweight patients with AIDS, as nutritional status proved to be related to important biochemical alterations.
Resumo:
OBJECTIVE: Anatomical and functional assessment of the heart through Doppler and echocardiography in patients with cell anemia (SCA). METHODS: Twenty-five patients with SCA and ages ranging from 14 to 45 years were prospectively studied in a comparison with 25 healthy volunteers. All of them underwent clinical and laboratory evaluation and Doppler echocardiography as well.The measurements were converted into body surface indices. RESULTS: There were increases in all chamber diameters and left ventricle (LV) mass of the SCA patients. It was characterised an eccentric hypertrophy of the left ventricle. The preload was increased (left ventricle end-diastolic volume) and the afterload was decreased (diastolic blood pressure, peripheral vascular resistance and end-systolic parietal stress ESPS). The cardiac index was increased due to the stroke volume. The ejection fraction and the percentage of the systolic shortening , as well as the systolic time intervals of the LV were equivalent. The isovolumetric contraction period of the LV was increased. The mitral E-septum distance and the end-systolic volume index (ESVi) were increased. The ESPS/ESVi ratio,a loading independent parameter, was decreased in SCA, suggesting systolic dysfunction. No significant differences in the diastolic function or in the pulmonary pressure occurred. CONCLUSION: Chamber dilations, eccentric hypertrophy and systolic dysfunction confirm the evidence of the literature in characterizing a sickle cell anemia cardiomyopathy.
Resumo:
The cell surfaces of five enteropathogenic Escherichia coli serotypes (O111:H2; O111:H12; O125:H9; O119:H6; O26:H11) were assayed by chemical methods, lectin agglutination tests and spectroscopy associated to transmission electron microscopy. Results of lectin agglutination assays showed that all strains reacted with mannosebinding lectins. Strains belonging to serotype O125:H9 also agglutinated with lectins which recognize galactose and Nacetylgalactosamine residues. The bacterial cells were treated with 0.01M phosphate buffered saline (pH 7.0) at 100oC for 2 hr and the extracts were submitted to precipitation and fractionated by Cetavlon. Phosphate, total sugar and protein contents were determined. Gas liquid chomatography-mass spectrometry analysis of alditol acetates showed the presence of galactose, mannose, fucose, glucose and traces of ribose. Spectroscopic analysis of intact cells showed the presence of a capsule-like structure which was not totally preserved after extraction. Some cells were still surrounded by an amorphous capsular-like material after polysaccharide extraction.