5 resultados para IRRADIANCE PREDICTIONS

em Scielo Saúde Pública - SP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT This study aimed to verify the differences in radiation intensity as a function of distinct relief exposure surfaces and to quantify these effects on the leaf area index (LAI) and other variables expressing eucalyptus forest productivity for simulations in a process-based growth model. The study was carried out at two contrasting edaphoclimatic locations in the Rio Doce basin in Minas Gerais, Brazil. Two stands with 32-year-old plantations were used, allocating fixed plots in locations with northern and southern exposure surfaces. The meteorological data were obtained from two automated weather stations located near the study sites. Solar radiation was corrected for terrain inclination and exposure surfaces, as it is measured based on the plane, perpendicularly to the vertical location. The LAI values collected in the field were used. For the comparative simulations in productivity variation, the mechanistic 3PG model was used, considering the relief exposure surfaces. It was verified that during most of the year, the southern surfaces showed lower availability of incident solar radiation, resulting in up to 66% losses, compared to the same surface considered plane, probably related to its geographical location and higher declivity. Higher values were obtained for the plantings located on the northern surface for the variables LAI, volume and mean annual wood increase, with this tendency being repeated in the 3PG model simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rumohra adiantiformis (Forst.) Ching is a fern (Dryopteridaceae) which is used to compose floral arrangements. Fertile fronds were harvested in the "Permanently Protected Area" of Ilha Comprida, São Paulo, Brazil. Sterilized spores were germinated in Mohr liquid medium modified by Dyer. The effect of 72%, 54%, 17% and 9% of total irradiance on germination under field conditions, was analyzed. Experiments were carried out in March (I), April (II) and August of 2000 (III). Under 54% and 72% of total irradiance in Experiment I (March) the germination was completely inhibited and partially inhibited under 72% of total irradiance in Experiment II (April). The lowest mean germination time () was observed under 9% of total irradiance in Experiments II (11.62 days) and III (8.80 days) respectively, followed by 17% in Experiment III (10.12 days) and 9% of total irradiance in the Experiment I (11.62 days ). The effect of temperatures of 15 ± 1, 20 ± 1, 25 ± 1 and 30 ± 1 ºC on germination was also analyzed. The lowest mean germination time (7.93 days) was observed at 25 ± 1 °C followed by 20 ± 1 °C. The highest mean germination time was observed at 15 ± 1 °C (12.10 days) followed by 30 ± 1 °C (10.63 days), which inhibited germination. The germination of R. adiantiformis was photoinhibited by high irradiance and partially inhibited by the highest temperature tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biological systems are complex dynamical systems whose relationships with environment have strong implications on their regulation and survival. From the interactions between plant and environment can emerge a quite complex network of plant responses rarely observed through classical analytical approaches. The objective of this current study was to test the hypothesis that photosynthetic responses of different tree species to increasing irradiance are related to changes in network connectances of gas exchange and photochemical apparatus, and alterations in plant autonomy in relation to the environment. The heat dissipative capacity through daily changes in leaf temperature was also evaluated. It indicated that the early successional species (Citharexylum myrianthum Cham. and Rhamnidium elaeocarpum Reiss.) were more efficient as dissipative structures than the late successional one (Cariniana legalis (Mart.) Kuntze), suggesting that the parameter deltaT (T ºCair - T ºCleaf) could be a simple tool in order to help the classification of successional classes of tropical trees. Our results indicated a pattern of network responses and autonomy changes under high irradiance. Considering the maintenance of daily CO2 assimilation, the tolerant species (C. myrianthum and R. elaeocarpum) to high irradiance trended to maintain stable the level of gas exchange network connectance and to increase the autonomy in relation to the environment. On the other hand, the late successional species (C. legalis) trended to lose autonomy, decreasing the network connectance of gas exchange. All species showed lower autonomy and higher network connectance of the photochemical apparatus under high irradiance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the photosynthetic responses of seven tropical trees of different successional groups under contrasting irradiance conditions, taking into account changes in gas exchange and chlorophyll a fluorescence. Although early successional species have shown higher values of CO2 assimilation (A) and transpiration (E), there was not a defined pattern of the daily gas exchange responses to high irradiance (FSL) among evaluated species. Cariniana legalis (Mart.) Kuntze (late secondary) and Astronium graveolens Jacq. (early secondary) exhibited larger reductions in daily-integrated CO2 assimilation (DIA) when transferred from medium light (ML) to FSL. On the other hand, the pioneer species Guazuma ulmifolia Lam. had significant DIA increase when exposed to FSL. The pioneers Croton spp. trended to show a DIA decrease around 19%, while Cytharexyllum myrianthum Cham. (pioneer) and Rhamnidium elaeocarpum Reiss. (early secondary) trended to increase DIA when transferred to FSL. Under this condition, all species showed dynamic photoinhibition, except for C. legalis that presented chronic photoinhibition of photosynthesis. Considering daily photosynthetic processes, our results supported the hypothesis of more flexible responses of early successional species (pioneer and early secondary species). The principal component analysis indicated that the photochemical parameters effective quantum efficiency of photosystem II and apparent electron transport rate were more suitable to separate the successional groups under ML condition, whereas A and E play a major role to this task under FSL condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural differences between cerrado species with different leaf phenologies are linked to crown architecture, leaf production, and biomass allocation to shoots and leaves. The present study characterized crown structures and the patterns of biomass allocation to leaves and shoots in two woody cerrado species with contrasting leaf phenologies and quantified the irradiance reaching their leaves to determine the best period during the day for photosynthetic activity. The shoots and leaves of five individuals of both Annona coriacea (deciduous) and Hymenaea stigonocarpa (evergreen) were collected along a 50 m transect in a cerrado fragment within the urban perimeter of Catalão - GO, to determine their patterns of biomass allocation in their crowns. The evergreen H. stigonocarpa had significantly higher mean values of shoot inclination (SI), petiole length (PL), leaf area (LA), leaf display index (LDI), and individual leaf area per shoot (ILA), while the deciduous species A. coriacea had significantly higher leaf numbers (LN). The more complex crown of H. stigonocarpa had shoots in more erect positions (orthotropic), with intense self-shading within shoots; A. coriacea, on the other hand, had slanting (plagiotropic) shoots in the crown, allowing similar irradiance levels to all leaf surfaces. The production of plagiotropic shoots by the deciduous species (A. coriacea) is a strategy that enables its use of incident sunlight early in the morning and preventing excessive water loss or excessive irradiance. Hymenaea stigonocarpa (an evergreen), by contrast, had orthotropic shoots and uses intense self-shading as a strategy to avoid excessive irradiance, especially at midday. Differences in crown architectures between evergreen and deciduous species of cerrado sensu stricto can therefore be viewed as adaptations to the environmental light regime.