13 resultados para INVERSE-EMULSION POLYMERIZATION
em Scielo Saúde Pública - SP
Resumo:
This paper reports the synthesis of nanostructured hydrogels of acrylamide by a two-step polymerisation process. The first step is performed by inverse microemulsion polymerization (water-in-oil) of N-isopropylacrylamide (NIPA), with these particles then added to aqueous solutions of acrylamide (AM), adding a crosslinking agent. The polymerization reaction is then initiated, thereby producing nanostructured hydrogels. We determined the capacity to absorb water, water and / or ethanol when nanostructured hydrogels were immersed in aqueous solutions with different concentrations of ethanol. It was found that the hydrogels were selective in absorbing water in all cases increasing with the ethanol concentration of the solutions.
Resumo:
A method for determining soil hydraulic properties of a weathered tropical soil (Oxisol) using a medium-sized column with undisturbed soil is presented. The method was used to determine fitting parameters of the water retention curve and hydraulic conductivity functions of a soil column in support of a pesticide leaching study. The soil column was extracted from a continuously-used research plot in Central Oahu (Hawaii, USA) and its internal structure was examined by computed tomography. The experiment was based on tension infiltration into the soil column with free outflow at the lower end. Water flow through the soil core was mathematically modeled using a computer code that numerically solves the one-dimensional Richards equation. Measured soil hydraulic parameters were used for direct simulation, and the retention and soil hydraulic parameters were estimated by inverse modeling. The inverse modeling produced very good agreement between model outputs and measured flux and pressure head data for the relatively homogeneous column. The moisture content at a given pressure from the retention curve measured directly in small soil samples was lower than that obtained through parameter optimization based on experiments using a medium-sized undisturbed soil column.
Use of thin films obtained by plasma polymerization for grain protection and germination enhancement
Resumo:
In this work, preliminary results of the use of hydrophobic thin films obtained by plasma deposition to protect grains and seeds are presented: grains coated by the films did not present biological degradation when stored in a saturated water vapor environment, but had their germination accelerated in the presence of water. A model that explains the difference of behavior of the films when exposed to water in vapor form or in liquid form, based on the formation of microchannels within the film that lead to water uptake in seeds, is presented. The model was successfully tested using quartz crystal measurements, which showed that the microchannels within the films can favor the adsorption and permeation of water when the films are immersed in water.
Resumo:
A neural network procedure to solve inverse chemical kinetic problems is discussed in this work. Rate constants are calculated from the product concentration of an irreversible consecutive reaction: the hydrogenation of Citral molecule, a process with industrial interest. Simulated and experimental data are considered. Errors in the simulated data, up to 7% in the concentrations, were assumed to investigate the robustness of the inverse procedure. Also, the proposed method is compared with two common methods in nonlinear analysis; the Simplex and Levenberg-Marquardt approaches. In all situations investigated, the neural network approach was numerically stable and robust with respect to deviations in the initial conditions or experimental noises.
Resumo:
Methane combustion was studied by the Westbrook and Dryer model. This well-established simplified mechanism is very useful in combustion science, for computational effort can be notably reduced. In the inversion procedure to be studied, rate constants are obtained from [CO] concentration data. However, when inherent experimental errors in chemical concentrations are considered, an ill-conditioned inverse problem must be solved for which appropriate mathematical algorithms are needed. A recurrent neural network was chosen due to its numerical stability and robustness. The proposed methodology was compared against Simplex and Levenberg-Marquardt, the most used methods for optimization problems.
Resumo:
The synthesis of polyacrylamide-cellulose acetate hydrogels by precipitation polymerization in acetone solution is reported herein. These hydrogels exhibit smaller swelling ratios and larger compression moduli than homo polyacrylamide hydrogels. For cellulose acetate concentrations above 20 wt.%, hydrogels with N,N'-methylenebisacrylamide as a crosslinker exhibit swelling ratios and compression moduli similar to those of the hydrogels without the crosslinker. A possible explanation for this behavior is that cellulose acetate crosslinks polyacrylamide via free-radical reaction. The hydrogels obtained without the N,N'-methylenebisacrylamide crosslinker exhibit compression moduli up to 1.7 MPa, making them suitable for tissue engineering applications such as cartilage replacement.
Resumo:
The use of autologous platelet concentrates, represent a promising and innovator tools in the medicine and dentistry today. The goal is to accelerate hard and soft tissue healing. Among them, the platelet-rich plasma (PRP) is the main alternative for use in liquid form (injectable). These injectable form ofplatelet concentrates are often used in regenerative procedures and demonstrate good results. The aim of this study is to present an alternative to these platelet concentrates using the platelet-rich fibrin in liquid form (injectable) and its use with particulated bone graft materials in the polymerized form.
Resumo:
This paper deals with the use of the conjugate gradient method of function estimation for the simultaneous identification of two unknown boundary heat fluxes in parallel plate channels. The fluid flow is assumed to be laminar and hydrodynamically developed. Temperature measurements taken inside the channel are used in the inverse analysis. The accuracy of the present solution approach is examined by using simulated measurements containing random errors, for strict cases involving functional forms with discontinuities and sharp-corners for the unknown functions. Three different types of inverse problems are addressed in the paper, involving the estimation of: (i) Spatially dependent heat fluxes; (ii) Time-dependent heat fluxes; and (iii) Time and spatially dependent heat fluxes.
Resumo:
In this work, we present the solution of a class of linear inverse heat conduction problems for the estimation of unknown heat source terms, with no prior information of the functional forms of timewise and spatial dependence of the source strength, using the conjugate gradient method with an adjoint problem. After describing the mathematical formulation of a general direct problem and the procedure for the solution of the inverse problem, we show applications to three transient heat transfer problems: a one-dimensional cylindrical problem; a two-dimensional cylindrical problem; and a one-dimensional problem with two plates.
Resumo:
The formal calibration procedure of a phase fraction meter is based on registering the outputs resulting from imposed phase fractions at known flow regimes. This can be straightforwardly done in laboratory conditions, but is rarely the case in industrial conditions, and particularly for on-site applications. Thus, there is a clear need for less restrictive calibration methods regarding to the prior knowledge of the complete set of inlet conditions. A new procedure is proposed in this work for the on-site construction of the calibration curve from total flown mass values of the homogeneous dispersed phase. The solution is obtained by minimizing a convenient error functional, assembled with data from redundant tests to handle the intrinsic ill-conditioned nature of the problem. Numerical simulations performed for increasing error levels demonstrate that acceptable calibration curves can be reconstructed, even from total mass measured within a precision of up to 2%. Consequently, the method can readily be applied, especially in on-site calibration problems in which classical procedures fail due to the impossibility of having a strict control of all the input/output parameters.
Resumo:
The aim of the method described here is to remove hemoglobin, the major contaminant in the bovine plasma obtained from slaughterhouses, by adding a mixture of 19% cold ethanol and 0.6% chloroform, followed by fibrinogen and globulin precipitation by the Cohn method and nonspecific hemagglutinin by thermocoagulation. The experimental volume of bovine plasma was 2,000 ml per batch. Final purification was performed by liquid chromatography using the ion-exchange gel DEAE-Sepharose FF. The bovine albumin thus obtained presented > or = 99% purity, a yield of 25.0 ± 1.2 g/l plasma and >71.5% recovery. N-acetyl-DL-tryptophan (0.04 mmol/g protein) and sodium caprylate (0.04 mmol/g protein) were used as stabilizers and the final concentration of albumin was adjusted to 22.0% (w/v), pH 7.2 to 7.3. Viral inactivation was performed by pasteurization for 10 h at 60°C. The bovine albumin for the hemagglutination tests used in immunohematology was submitted to chemical treatment with 0.06% (w/v) glutaraldehyde and 0.1% (w/v) formaldehyde at 37°C for 12 h to obtain polymerization. A change in molecular distribution was observed after this treatment, with average contents of 56.0% monomers, 23.6% dimers, 12.2% trimers and 8.2% polymers. The tests performed demonstrated that this polymerized albumin enhances the agglutination of Rho(D)-positive red cells by anti-Rho(D) serum, permitting and improving visualization of the results.
Resumo:
Disorders of the lipid metabolism may play a role in the genesis of abdominal aorta aneurysm. The present study examined the intravascular catabolism of chylomicrons, the lipoproteins that carry the dietary lipids absorbed by the intestine in the circulation in patients with abdominal aorta aneurysm. Thirteen male patients (72 ± 5 years) with abdominal aorta aneurysm with normal plasma lipid profile and 13 healthy male control subjects (73 ± 5 years) participated in the study. The method of chylomicron-like emulsions was used to evaluate this metabolism. The emulsion labeled with 14C-cholesteryl oleate and ³H-triolein was injected intravenously in both groups. Blood samples were taken at regular intervals over 60 min to determine the decay curves. The fractional clearance rate (FCR) of the radioactive labels was calculated by compartmental analysis. The FCR of the emulsion with ³H-triolein was smaller in the aortic aneurysm patients than in controls (0.025 ± 0.017 vs 0.039 ± 0.019 min-1; P < 0.05), but the FCR of14C-cholesteryl oleate of both groups did not differ. In conclusion, as indicated by the triglyceride FCR, chylomicron lipolysis is diminished in male patients with aortic aneurysm, whereas the remnant removal which is traced by the cholesteryl oleate FCR is not altered. The results suggest that defects in the chylomicron metabolism may represent a risk factor for development of abdominal aortic aneurysm.
Resumo:
Introduction: Sepsis is a leading precipitant of Acute Kidney Injury (AKI) in intensive care unit (ICU) patients, and is associated with a high mortality rate. Objective: We aimed to evaluate the risk factors for dialysis and mortality in a cohort of AKI patients of predominantly septic etiology. Methods: Adult patients from an ICU for whom nephrology consultation was requested were included. End-stage chronic renal failure and kidney transplant patients were excluded. Results: 114 patients were followed. Most had sepsis (84%), AKIN stage 3 (69%) and oliguria (62%) at first consultation. Dialysis was performed in 66% and overall mortality was 70%. Median serum creatinine in survivors and non-survivors was 3.95 mg/dl (2.63 - 5.28) and 2.75 mg/dl (1.81 - 3.69), respectively. In the multivariable models, oliguria and serum urea were positively associated with dialysis; otherwise, a lower serum creatinine at first consultation was independently associated with higher mortality. Conclusion: In a cohort of septic AKI, oliguria and serum urea were the main indications for dialysis. We also described an inverse association between serum creatinine and mortality. Potential explanations for this finding include: delay in diagnosis, fluid overload with hemodilution of serum creatinine or poor nutritional status. This finding may also help to explain the low discriminative power of general severity scores - that assign higher risks to higher creatinine levels - in septic AKI patients.