68 resultados para IFN-gamma level
em Scielo Saúde Pública - SP
Resumo:
Insulin-dependent diabetes mellitus is caused by autoimmune destruction of pancreatic ß cells. Non-obese diabetic (NOD) mice spontaneously develop diabetes similar to the human disease. Cytokines produced by islet-infiltrating mononuclear cells may be directly cytotoxic and can be involved in islet destruction coordinated by CD4+ and CD8+ cells. We utilized a semiquantitative RT-PCR assay to analyze in vitro the mRNA expression of TNF-alpha and IFN-gamma cytokine genes in isolated islets (N = 100) and spleen cells (5 x 10(5) cells) from female NOD mice during the development of diabetes and from female CBA-j mice as a related control strain that does not develop diabetes. Cytokine mRNAs were measured at 2, 4, 8, 14 and 28 weeks of age from the onset of insulitis to the development of overt diabetes. An increase in IFN-gamma expression in islets was observed for females aged 28 weeks (149 ± 29 arbitrary units (AU), P<0.05, Student t-test) with advanced destructive insulitis when compared with CBA-j mice, while TNF-alpha was expressed in both NOD and CBA-j female islets at the same level at all ages studied. In contrast, TNF-alpha in spleen was expressed at higher levels in NOD females at 14 weeks (99 ± 8 AU, P<0.05) and 28 weeks (144 ± 17 AU, P<0.05) of age when compared to CBA-j mice. The data suggest that IFN-gamma and TNF-alpha expression in pancreatic islets of female NOD mice is associated with ß cell destruction and overt diabetes.
Resumo:
Macrophages are critical for natural immunity and play a central role in specific acquired immunity. The IFN-gamma activation of macrophages derived from A/J or BALB/c mice yielded two different patterns of antiviral state in murine hepatitis virus 3 infection, which were related to a down-regulation of the main virus receptor. Using cDNA hybridization to evaluate mRNA accumulation in the cells, we were able to identify several genes that are differently up- or down-regulated by IFN-gamma in A/J (267 and 266 genes, respectively, up- and down-regulated) or BALB/c (297 and 58 genes, respectively, up- and down-regulated) mouse macrophages. Macrophages from mice with different genetic backgrounds behave differently at the molecular level and comparison of the patterns of non-activated and IFN-gamma-activated A/J or BALB/c mouse macrophages revealed, for instance, an up-regulation and a down-regulation of genes coding for biological functions such as enzymatic reactions, nucleic acid synthesis and transport, protein synthesis, transport and metabolism, cytoskeleton arrangement and extracellular matrix, phagocytosis, resistance and susceptibility to infection and tumors, inflammation, and cell differentiation or activation. The present data are reported in order to facilitate future correlation of proteomic/transcriptomic findings as well as of results obtained from a classical approach for the understanding of biological phenomena. The possible implication of the role of some of the gene products relevant to macrophage biology can now be further scrutinized. In this respect, a down-regulation of the main murine hepatitis virus 3 receptor gene was detected only in IFN-gamma-activated macrophages of resistant mice.
Resumo:
Iron is an essential growth element of virtually all microorganisms and its restriction is one of the mechanisms used by macrophages to control microbial multiplication. Paracoccidioides brasiliensis, the agent of paracoccidioidomycosis, an important systemic mycosis in Latin America, is inhibited in its conidia-to-yeast conversion in the absence of iron. We studied the participation of iron in the nitric oxide (NO)-mediated fungicidal mechanism against conidia. Peritoneal murine macrophages activated with 50U/mL of IFN-gamma or treated with 35 µM Deferoxamine (DEX) and infected with P. brasiliensis conidia, were co-cultured and incubated for 96 h in the presence of different concentrations of holotransferrin (HOLO) and FeS0(4). The supernatants were withdrawn in order to assess NO2 production by the Griess method. The monolayers were fixed, stained and observed microscopically. The percentage of the conidia-to-yeast transition was estimated by counting 200 intracellular propagules. IFN-gamma-activated or DEX-treated Mthetas presented marked inhibition of the conidia-to-yeast conversion (19 and 56%, respectively) in comparison with non-activated or untreated Mthetas (80%). IFN-gamma-activated macrophages produced high NO levels in comparison with the controls. Additionally, when the activated or treated-macrophages were supplemented with iron donors (HOLO or FeSO4), the inhibitory action was reversed, although NO production remained intact. These results suggest that the NO-mediated fungicidal mechanism exerted by IFN-gamma-activated macrophages against P. brasiliensis conidia, is dependent of an iron interaction.
Resumo:
To evaluate if IFN-gamma and TNF-alpha levels could be used as markers of therapeutic response in cutaneous leishmaniasis, 54 patients with history of one ulcerated cutaneous lesion, with up to 30 days onset, were enrolled in the study. IFN-gammaand TNF-alpha were measured by ELISA in lymphocyte cultures supernatant before and 60 days after initiating therapy. Cure was considered to be a complete healing of lesion 60 days after treatment. IFN-gamma and TNF-alpha levels were similar in both groups of patients before therapy. There was a tendency to increase IFN-gamma levels in patients that were cured in 60 days, however the values did not reach statistical significance. In both groups of patients, TNF-alpha levels were similar before therapy and fell significantly after treatment, irrespective of cure or maintenance of active lesion.
Resumo:
We analyzed the kinetics of cytokine production by mononuclear cells from 17 patients who had been treated for paracoccidioidomycosis, using the stimulus of gp43 peptide groups (43kDa glycoprotein of Paracoccidioides brasiliensis) at 0.1 and 1µM, gp43 (1µg/ml) and crude Paracoccidioides brasiliensis antigen (PbAg; 75µg/ml). IFN-gamma production was a maximum at 144 hours in relation to the G2 and G8 peptide groups at 1µM and was greatest at 144 hours when stimulated by gp43 and by PbAg. The maximum TNF-alpha production was at 144 hours for the G2 group (0.1µM) and for gp43. IL-10 production was highest after 48 and 72 hours for G7 and G6 at 1µM, respectively. We also suggest the best time for analysis of IL4 production. These results may contribute towards future studies with gp43 peptides and encourage further investigations with the aim of understanding the influence of these peptides on the production of inflammatory and regulatory cytokines.
Resumo:
In this communication the authors analyzed the pattern of expression of IFN-gamma as a surrogate type 1 response in different clinical forms of schistosomiasis in response to stimulation involving T-cell dependent and T-cell independent pathways, to investigate which pathways were functional in human schistosomiasis, and to further characterize the nature of Th1 response impairment in this parasitic disease.
Resumo:
Actin-based motor protein requirements and nitric oxide (NO) production are important features of macrophage activity during phagocytosis or microbicidal processes. Different classes of myosins contribute directly or indirectly to phagocytosis by providing mechanical force for phagosome closure or organelle movement. Recent data have shown the presence of myosins IC, II, V and IXb in phagosomes of bone marrow-derived murine macrophages. In our investigation we demonstrated the presence of different classes of myosins in J774 macrophages. We also analyzed the effect of gamma interferon (IFN-gamma), with or without calcium ionophore or cytochalasin B, on myosins as well as on inducible nitric oxide synthase (iNOS) expression and NO production. Myosins IC, II, Va, VI and IXb were identified in J774 macrophages. There was an increase of myosin V expression in IFN-gamma-treated cells. iNOS expression was increased by IFN-gamma treatment, while calcium ionophore and cytochalasin B had a negative influence on both myosin and iNOS expression, which was decreased. The increases in NO synthesis were reflected by increased iNOS expression. Macrophages activated by IFN-gamma released significant amounts of NO when compared to control groups. In contrast, NO production by calcium ionophore- and cytochalasin B-treated cells was similar to that of control cells. These results suggest that IFN-gamma is involved in macrophage activation by stimulating protein production to permit both phagocytosis and microbicidal activity.
Resumo:
Although Helicobacter heilmannii infection is less common than H. pylori infection in humans, it is considered to be of medical importance because of its association with gastritis, gastric ulcer, carcinoma, and mucosa-associated lymphoid tissue lymphoma of the stomach. However, there have been no studies evaluating the role of the Th cell response in H. heilmannii gastric infection. We evaluated the participation of pro-inflammatory and anti-inflammatory cytokines, IFN-gamma and IL-4, in H. heilmannii gastric infection in genetically IFN-gamma- or IL-4-deficient mice. The serum IFN-gamma and IL-4 concentrations were determined by ELISA. The gastric polymorphonuclear infiltrate was higher (P = 0.007) in H. heilmannii-positive than in H. heilmannii-negative wild-type (WT) C57BL/6 mice, whereas no significant inflammation was demonstrable in the stomach of H. heilmannii-positive IFN-gamma-/- C57BL/6 mice. The degree of gastric inflammatory cells, especially in oxyntic mucosa, was also higher (P = 0.007) in infected IL-4-/- than in WT BALB/c mice. Serum IFN-gamma levels were significantly higher in IL-4-/- than in WT BALB/c mice, independently of H. heilmannii-positive or -negative status. Although no difference in serum IFN-gamma levels was seen between H. heilmannii-positive (11.3 ± 3.07 pg/mL, mean ± SD) and -negative (11.07 ± 3.5 pg/mL) WT BALB/c mice, in the group of IL-4-/- animals, the serum concentration of IFN-g was significantly higher in the infected ones (38.16 ± 10.5 pg/mL, P = 0.04). In contrast, serum IL-4 levels were significantly decreased in H. heilmannii-positive (N = 10) WT BALB/c animals compared to the negative (N = 10) animals. In conclusion, H. heilmannii infection induces a predominantly Th1 immune response, with IFN-gamma playing a central role in gastric inflammation.
Resumo:
Human pulmonary tuberculosis (TB) is a worldwide public health problem. In resistant individuals, control of the infection mainly requires development of a Th1 cell immune response with production of cytokines, of which interferon-gamma (IFN-gamma)plays an important role. Several antigens from Mycobacterium tuberculosis complex has been described for use in vaccine development or for diagnostic purposes, however little evaluation has been done in endemic area for TB. The proliferative and IFN-gamma human T cell immune responses, to four recombinant proteins (MBP-3, NarL, MT-10.3, 16 kDa) and PPD, of 38 Brazilian TB patients (6 untreated and 32 treated) and 67 controls (38 positive and 29 negative tuberculin skin test - TST) were compared. The highest reactivity mean rate was obtained with PPD followed by 16 kDa in TB patients. While most of the patients (87%) and controls (> 64%) respond to the PPD, 16kDa was more specifically recognized (> 21%) although less sensitive (54%). When TB patients were divided according to treatment status, opposite to PPD, higher average level of IFN-gamma was induced by 16kDa in untreated (505 pg/ml) compared to treated TB patients and TST+ (269.8 pg/ml x 221.6pg/ml, respectively), although the difference was not significant. These data show that in contrast with the other recombinant proteins, the stimulatory potency of 16kDa to induce proliferative and INF-gamma response was more effective and is more recognized by active TB untreated patients, eliciting in control individuals a more selective immune response than PPD.
Resumo:
Several primary immunodeficiency diseases affecting the interleukin 12/interferon gamma (IFN-gamma) pathway have been identified, most of them characterized by recurrent and protracted infections produced by intracellular microorganisms, particularly by several species of mycobacteria. In the present study we analyzed the expression of IFN-gamma receptor (IFN-gammaR) and signal transducer and activator of transcription 1 (STAT-1) in 4 children with Mycobacterium tuberculosis infection of uncommon clinical presentation. These molecules were evaluated by flow cytometry and Western blotting in B cells transformed with Epstein-Barr virus and mutations were scanned by single-strand conformational polymorphisms and DNA sequencing. The expression of IFN-gammaR1 was normal in all 4 patients. The genetic analysis of IFN-gammaR1 and IFN-gammaR2 coding sequences did not reveal any mutation. The expression of the STAT-1 molecule was similar in patients and healthy controls; however, when the phosphorylation of this transcription factor in response to IFN-gamma activation was evaluated by Western blot, a significant lower signal was evident in one patient. These data indicate that there are no alterations in the expression or function of the IFN-gammaR chains in these patients. However, the low level of STAT-1 phosphorylation found in one of these patients might be explained by a defect in one of the molecules involved in the signal transduction pathway after IFN-gamma interacts with its receptor. In the other three patients the inability to eliminate the mycobacteria may be due to a defect in another effector mechanism of the mononuclear phagocytes.
Resumo:
Systemic disease by Cryptococcus neoformans (C. neoformans) is a common opportunistic infection in immunodeficient patients. Cellular immunity seems to be the most important determinant of resistance. The aim of this study was to assess the effect of recombinant rat interferon gamma (IFN-gamma) in murine cryptococcosis (Balb/c mice infected by IP route with the Rivas strain of C. neoformans), evaluating survival time, macroscopic and microscopic examination of the organs, and massive seeding of brain homogenate. IFN-gamma treatment, at a daily dose of 10,000 IU, did not modify significantly these variables when mice were challenged with a high inoculum (10(7) yeasts) and treatment was delayed to 5 days after infection (median survival 21 days in control mice vs. 23 days in IFN-treated). Another set of experiments suggested that IFN-gamma treatment, at a dose of 10,000 IU/day, begun at the moment of infection could be useful (it prolonged survival from 20 to 28 days, although the difference did not achieve statistical signification). When used simultaneously with infection by 3.5 x 10(5) yeasts, IFN-gamma at 10,000 IU/day for 15 days significantly prolonged survival of mice (p = 0.004). These results suggest that, depending on the experimental conditions, IFN-gamma can improve survival of mice infected with a lethal dose of C. neoformans.
Resumo:
beta-glucan, one of the major cell wall components of Saccharomyces cerevisiae, has been found to enhance immune functions. This study investigated in vivo and in vitro effects of beta-glucan on lymphoproliferation and interferon-gamma (IFN-gamma) production by splenic cells from C57BL/6 female mice. All experiments were performed with particulate beta-glucan derived from S. cerevisiae. Data demonstrated that both, i.p administration of particulate beta-glucan (20 or 100 µg/animal) and in vitro stimulation of splenic cells (20 or 100 µg/ml of culture) decreased lymphoproliferation and IFN-gamma production induced by concanavalin A. These results suggest that beta-glucan can trigger a down-modulatory effect regulating a deleterious immune system hyperactivity in the presence of a strong stimulus.
Resumo:
Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis whose interaction with the host may lead to a cell-mediated protective immune response. The presence of interferon-g (IFN-gamma) is related to this response. With the purpose of understanding the immunological mechanisms involved in this protection, the lymphoproliferative response, IFN-g and other cytokines like interleukin (IL-5, IL-10), and tumor necrosis factor alpha (TNF-a) were evaluated before and after the use of anti-TB drugs on 30 patients with active TB disease, 24 healthy household contacts of active TB patients, with positive purified protein derivative (PPD) skin tests (induration > 10 mm), and 34 asymptomatic individuals with negative PPD skin test results (induration < 5 mm). The positive lymphoproliferative response among peripheral blood mononuclear cells of patients showed high levels of IFN-g, TNF-a, and IL-10. No significant levels of IL-5 were detected. After treatment with rifampicina, isoniazida, and pirazinamida, only the levels of IFN-g increased significantly (p < 0.01). These results highlight the need for further evaluation of IFN-g production as a healing prognostic of patients treated.
Resumo:
Allergic diseases have been closely related to Th2 immune responses, which are characterized by high levels of interleukin (IL) IL-4, IL-5, IL-9 and IL-13. These cytokines orchestrate the recruitment and activation of different effector cells, such as eosinophils and mast cells. These cells along with Th2 cytokines are key players on the development of chronic allergic inflammatory disorders, usually characterized by airway hyperresponsiveness, reversible airway obstruction, and airway inflammation. Accumulating evidences have shown that altering cytokine-producing profile of Th2 cells by inducing Th1 responses may be protective against Th2-related diseases such as asthma and allergy. Interferon-gamma (IFN-gamma), the principal Th1 effector cytokine, has shown to be crucial for the resolution of allergic-related immunopathologies. In fact, reduced production of this cytokine has been correlated with severe asthma. In this review, we will discuss the role of IFN-gamma during the generation of immune responses and its influence on allergic inflammation models, emphasizing its biologic properties during the different aspects of allergic responses.