18 resultados para Hypoxic ischaemic encephaolpathy
em Scielo Saúde Pública - SP
Resumo:
SUMMARY Inflammation due to Shigella flexneri can cause damage to the colonic mucosa and cell death by necrosis and apoptosis. This bacteria can reach the bloodstream in this way, and the liver through portal veins. Hypoxia is a condition present in many human diseases, and it may induce bacterial translocation from intestinal lumen. We studied the ability of S. flexneri to invade rat hepatocytes and Caco-2 cells both in normoxic and hypoxic microenvironments, as well as morphological and physiological alterations in these cells after infection under hypoxia. We used the primary culture of rat hepatocytes as a model of study. We analyzed the following parameters in normoxic and hypoxic conditions: morphology, cell viability, bacterial recovery and lactate dehydrogenase (LDH) released. The results showed that there were fewer bacteria within the Caco-2 cells than in hepatocytes in normoxic and hypoxic conditions. We observed that the higher the multiplicity of infection (MOI) the greater the bacterial recovery in hepatocytes. The hypoxic condition decreased the bacterial recovery in hepatocytes. The cytotoxicity evaluated by LDH released by cells was significantly higher in cells submitted to hypoxia than normoxia. Caco-2 cells in normoxia released 63% more LDH than hepatocytes. LDH increased 164% when hepatocytes were submitted to hypoxia and just 21% when Caco-2 cells were in the same condition. The apoptosis evaluated by Tunel was significantly higher in cells submitted to hypoxia than normoxia. When comparing hypoxic cells, we obtained more apoptotic hepatocytes than apoptotic Caco-2 cells. Concluding our results contribute to a better knowledge of interactions between studied cells and Shigella flexneri. These data may be useful in the future to define strategies to combat this virulent pathogen.
Resumo:
Standard ecological methods (pitfall traps, trunk eclectors and soil cores) were used to evaluate collembolan community responses to different flooding intensities. Three sites of a floodplain habitat near Mainz, Germany, with different flooding regimes were investigated. The structures of collembolan communities are markedly different depending on flooding intensity. Sites more affected by flooding are dominated by hygrophilic and hygrotolerant species, whereas the hardwood floodplain is dominated by mesophilic species. The survival strategies of the hygrophilic and hygrotolerant species include egg diapause and passive drifting. The physiological adaptations to hypoxic conditions of several collembolan species were analyzed using a microcalorimeter. The activities were tested under normoxic and hypoxic/anoxic conditions as well as during post-hypoxic recovery. Lactate was increased after hypoxic intervals in the species studied, suggesting that, in addition to a massive decrease in metabolic rate, a modest glycolytic activity may be involved in the tolerance to hypoxia.
Resumo:
The carotid bodies of rats made chronically hypoxic by breathing 12% O2 in a normobaric chamber (inspired PO2 91 mmHg) were compared with those of controls. Serial 5-µm sections of the organs were examined using an interactive image analysis system. The total volume of the carotid bodies was increased by 64%. The total vascular volume rose by 103% and was likely due to an increase in size of the large vessels (>12 µm lumen diameter) because the small vessel (5-12 µm lumen diameter) volume did not increase significantly while the small vessel density tended to decrease. The extravascular volume was increased by 57%. Expressed as a percentage of the total volume of the organ, the total vascular volume did not change, but the small vessel volume was significantly decreased from 7.83 to 6.06%. The large vessel volume must therefore have been increased. The proportion occupied by the extravascular volume was virtually unchanged (84 vs 82%). In accordance with these findings, the small vessel endothelial surface area per unit carotid body volume was diminished from 95.2 to 76.5 mm-1, while the extravascular area per small vessel was increased from 493 to 641 µm2 or by 30%. In conclusion, the enlargement of the carotid body in chronic hypoxia is most likely due to an increase in total vascular volume, mainly involving the "large" vessels, and to an increase in extravascular volume. This is in contrast to our previously published findings indicating that in the spontaneous insulin-dependent diabetic rat the enlargement of the carotid body is due solely to an increase in extravascular volume.
Resumo:
Neonatal Sprague-Dawley rats were randomly divided into normal control, mild hypoxia-ischemia (HI), and severe HI groups (N = 10 in each group at each time) on postnatal day 7 (P7) to study the effect of mild and severe HI on anxiety-like behavior and the expression of tyrosine hydroxylase (TH) in the substantia nigra (SN). The mild and severe HI groups were exposed to hypoxia (8% O2/92% N2) for 90 and 150 min, respectively. The elevated plus-maze (EPM) test was performed to assess anxiety-like behavior by measuring time spent in the open arms (OAT) and OAT%, and immunohistochemistry was used to determine the expression of TH in the SN at P14, P21, and P28. OAT and OAT% in the EPM were significantly increased in both the mild (1.88-, 1.99-, and 2.04-fold, and 1.94-, 1.51-, and 1.46-fold) and severe HI groups (1.69-, 1.68-, and 1.87-fold, and 1.83-, 1.43-, and 1.39-fold, respectively; P < 0.05). The percent of TH-positive cells occupying the SN area was significantly and similarly decreased in both the mild (17.7, 40.2, and 47.2%) and severe HI groups (16.3, 32.2, and 43.8%, respectively; P < 0.05). The decrease in the number of TH-positive cells in the SN and the level of protein expression were closely associated (Pearson correlation analysis: r = 0.991, P = 0.000 in the mild HI group and r = 0.974, P = 0.000 in the severe HI group) with the impaired anxiety-like behaviors. We conclude that neonatal HI results in decreased anxiety-like behavior during the juvenile period of Sprague-Dawley rats, which is associated with the decreased activity of TH in the SN. The impairment of anxiety and the expression of TH are not likely to be dependent on the severity of HI.
Resumo:
Our objective was to investigate the protein level of phosphorylated N-methyl-D-aspartate (NMDA) receptor-1 at serine 897 (pNR1 S897) in both NMDA-induced brain damage and hypoxic-ischemic brain damage (HIBD), and to obtain further evidence that HIBD in the cortex is related to NMDA toxicity due to a change of the pNR1 S897 protein level. At postnatal day 7, male and female Sprague Dawley rats (13.12 ± 0.34 g) were randomly divided into normal control, phosphate-buffered saline (PBS) cerebral microinjection, HIBD, and NMDA cerebral microinjection groups. Immunofluorescence and Western blot (N = 10 rats per group) were used to examine the protein level of pNR1 S897. Immunofluorescence showed that control and PBS groups exhibited significant neuronal cytoplasmic staining for pNR1 S897 in the cortex. Both HIBD and NMDA-induced brain damage markedly decreased pNR1 S897 staining in the ipsilateral cortex, but not in the contralateral cortex. Western blot analysis showed that at 2 and 24 h after HIBD, the protein level of pNR1 S897 was not affected in the contralateral cortex (P > 0.05), whereas it was reduced in the ipsilateral cortex (P < 0.05). At 2 h after NMDA injection, the protein level of pNR1 S897 in the contralateral cortex was also not affected (P > 0.05). The levels in the ipsilateral cortex were decreased, but the change was not significant (P > 0.05). The similar reduction in the protein level of pNR1 S897 following both HIBD and NMDA-induced brain damage suggests that HIBD is to some extent related to NMDA toxicity possibly through NR1 phosphorylation of serine 897.
Resumo:
The aim of this study was to analyze the association of different clinical contributors of hypoxic-ischemic encephalopathy with NOS3 gene polymorphisms. A total of 110 children with hypoxic-ischemic encephalopathy and 128 control children were selected for this study. Association of gender, gestational age, birth weight, Apgar score, cranial ultrasonography, and magnetic resonance imaging findings with genotypic data of six haplotype-tagging single nucleotide polymorphisms and the most commonly investigated rs1800779 and rs2070744 polymorphisms was analyzed. The TGT haplotype of rs1800783, rs1800779, and rs2070744 polymorphisms was associated with hypoxic-ischemic encephalopathy. Children with the TGT haplotype were infants below 32 weeks of gestation and they had the most severe brain damage. Increased incidence of the TT genotype of the NOS3 rs1808593 SNP was found in the group of hypoxic-ischemic encephalopathy patients with medium and severe brain damage. The probability of brain damage was twice as high in children with the TT genotype than in children with the TG genotype of the same polymorphism. Furthermore, the T allele of the same polymorphism was twice as frequent in children with lower Apgar scores. This study strongly suggests associations of NOS3 gene polymorphism with intensity of brain damage and severity of the clinical picture in affected children.
Resumo:
The timing and mechanisms of protection by hyperbaric oxygenation (HBO) in hypoxic-ischemic brain damage (HIBD) have only been partially elucidated. We monitored the effect of HBO on the mitochondrial function of neuronal cells in the cerebral cortex of neonatal rats after HIBD. Neonatal Sprague-Dawley rats (total of 360 of both genders) were randomly divided into normal control, HIBD, and HIBD+HBO groups. The HBO treatment began immediately after hypoxia-ischemia (HI) and continued once a day for 7 consecutive days. Animals were euthanized 0, 2, 4, 6, and 12 h post-HI to monitor the changes in mitochondrial membrane potential (ΔΨm) occurring soon after a single dose of HBO treatment, as well as 2, 3, 4, 5, 6, and 7 days post-HI to study ΔΨm changes after a series of HBO treatments. Fluctuations in ΔΨm were observed in the ipsilateral cortex in both HIBD and HIBD+HBO groups. Within 2 to 12 h after HI insult, the ΔΨm of the HIBD and HIBD+HBO groups recovered to some extent. A secondary drop in ΔΨm was observed in both groups during the 1-4 days post-HI period, but was more severe in the HIBD+HBO group. There was a secondary recovery of ΔΨm observed in the HIBD+HBO group, but not in the HIBD group, during the 5-7 days period after HI insult. HBO therapy may not lead to improvement of neural cell mitochondrial function in the cerebral cortex in the early stage post-HI, but may improve it in the sub-acute stage post-HI.
Resumo:
Mortality due to chronic diseases has been increasing in all regions of Brazil with corresponding decreases in mortality from infectious diseases. The geographical variation in proportionate mortality for chronic diseases for 17 Brazilian state capitals for the year 1985 and their association with socio-economic variables and infectious disease was studied. Calculations were made of correlation coefficients of proportionate mortality for adults of 30 years or above due to ischaemic heart disease, stroke and cancer of the lung, the breast and stomach with 3 socio-economic variables, race, and mortality due to infectious disease. Linear regression analysis included as independent variables the % of illiteracy, % of whites, % of houses with piped water, mean income, age group, sex, and % of deaths caused by infectious disease. The dependent variables were the % of deaths due to each one of the chronic diseases studied by age-sex group. Chronic diseases were an important cause of death in all regions of Brazil. Ischaemic heart diseases, stroke and malignant neoplasms accounted for more than 34% of the mortality in each of the 17 capitals studied. Proportionate cause-specific mortality varied markedly among state capitals. Ranges were 6.3-19.5% for ischaemic heart diseases, 8.3-25.4% for stroke, 2.3-10.4% for infections and 12.2-21.5% for malignant neoplasm. Infectious disease mortality had the highest (p < 0.001) correlation with all the four socio-economic variables studied and ischaemic heart disease showed the second highest correlation (p < 0.05). Higher socio-economic level was related to a lower % of infectious diseases and a higher % of ischaemic heart diseases. Mortality due to breast cancer and stroke was not associated with socio-economic variables. Multivariate linear regression models explained 59% of the variance among state capitals for mortality due to ischaemic heart disease, 50% for stroke, 28% for lung cancer, 24% for breast cancer and 40% for stomach cancer. There were major differences in the proportionate mortality due to chronic diseases among the capitals which could not be accounted for by the social and environmental factors and by the mortality due to infectious disease.
Resumo:
This prospective study on 41 autopsy collected human hearts concerns the "apical" lesion in Chagas' disease. Previous report did not show a correlation between lesion frequency and heart weight then discarding a vascular factor in its pathogenesis. The present paper involves other variables besides the heart weight to evaluate the relative coronary insufficiency. Distinct colored gel (green and red) injected through the capillary beds of both coronary arteries defined the extent of both vessels before separating the atria and removing the sub-epicardium fat. The Right Ventricle (RV) and Left Ventricle (LV) free walls furnished the RV/LV mass ratio. The myocardium mass colored green (right coronary artery - RC) and the whole Ventricular Weight (VW) determined the RC/VW mass ratio. The heart weight plus these mass ratios, graded and added, composed a score inversely proportional to the myocardium irrigation condition. It intended to be a more sensitive morphologic evaluation of the relative ischaemia to correlate to the apical lesion. This study showed a right deviation for the relative accumulated frequency of lesions plotted as a score function and a significant difference for higher scores in hearts with aneurysm. It suggests a ischaemic factor intervening in the apical lesion pathogenesis in Chagas' cardiopathy.
Resumo:
Chagas disease is a pleomorphic clinical entity that has several unique features. The aim of this study is to summarise some of the recent contributions from our research group to knowledge of the morbidity and prognostic factors in Chagas heart disease. A retrospective study suggested that ischaemic stroke associated with left ventricular (LV) apical thrombi is the first clinical manifestation of Chagas disease observed in a large proportion of patients. LV function and left atrial volume (LAV) are independent risk factors for ischaemic cerebrovascular events during follow-up of Chagas heart disease patients. Pulmonary congestion in Chagas-related dilated cardiomyopathy is common but usually mild. Although early right ventricular (RV) involvement has been described, we have shown by Doppler echocardiography that RV dysfunction is evident almost exclusively when it is associated with left ventricle dilatation and functional impairment. In addition, RV dysfunction is a powerful predictor of survival in patients with heart failure secondary to Chagas disease. We have also demonstrated that LAV provides incremental prognostic information independent of clinical data and conventional echocardiographic parameters that predict survival.
Resumo:
A problem often encountered in cancer therapy is the presence of tumor cell subpopulation that are resistant to treatment. Solid tumors frequently contain hypoxic cells that are resistant to killing by ionizing radiation and also by many chemotherapeutic agents. However, these hypoxic cells can be exploited for therapy by non-toxic hypoxic-activated prodrugs. Bioreductive drugs require metabolic reduction to generate cytotoxic metabolites. This process is facilitated by appropriate reductases and the lower oxygen conditions present in solid tumors. The unique presence of hypoxic cells in human tumors provides an important target for selective cancer therapy.
Resumo:
Intestinal complications after laparoscopic cholecystectomy are rare and usually caused by direct injury sustained on trocar insertion. However, intestinal ischaemia has been reported as an unusual complication of the pneumoperitoneum. We describe a 55-years-old patient who underwent an uneventful laparoscopic cholecystectomy after an episode of acute cholecystitis. Initial recovery was complicated by development of increasing abdominal pain which led to open laparotomy on day 2. Gangrene of the distal ileum and right-sided colon was detected and small bowel resection with right colectomy and primary anastomosis was performed. Histological examination of the resected ileum showed features of venous hemorragic infarction and trombosis. In view of the proximity of the operation it is assumed that ileal ischaemia was precipitated by carbon dioxide pneumoperitoneum. Some studies have been demonstrated that, within 30 minutes of establishing a pneumoperitoneum at an intraabdominal pressure of 16 mmHg, cardiac output, blood flow in the superior mesenteric artery and portal vein decrease progressively. Carbon dioxide pneumoperitoneum may lead to mechanical compression of the splanchnic veins and mesenteric vasoconstriction as a result of carbon dioxide absortion. The distribution of the ischaemic segment of intestine is also unusual as the most precarious blood supply is traditionally at the splenic flexure of the colon. It has been suggested that intermittent decompression of the abdomen reduces the risk of mesenteric ischaemia during penumoperitoneum especially in patients with predisposing clinical features for arteriosclerosis intestinal. In present patient was observed intestinal venous infarction what remains unclear but we think the carbon dioxide pneumoperitoneum have been related to it.
Resumo:
Abstract: Although frequently in humans, hypoxic and ischemic heart diseases are poorly documented in dogs, with only few reports of acute myocardial infarction (AMI) in this species. Some electrocardiographic findings might suggest myocardium hypoxia/ischemia, like ST segment elevation or depression, but there are no studies showing whether deviations in ST segment are associated to myocardial injury and serum increase of creatine phosphokinase (CPK-MB). In order to investigate possible myocardial cells injury in poor perfusion conditions, 38 dogs were studied, 20 with normal electrocardiogram and 18 with ST segment elevation or depression, recorded in lead II, at a paper speed of 50 mm/sec and N sensibility (1mV=1cm). Serum measurement of creatine phosphokinase isoenzyme MB (CPK-MB) in normal dogs (group 1) determined control values (in ng/mL), which were compared to those obtained from dogs with deviation (group 2), which allowed confirmation or not of myocardial injury. CPK-MB mean values obtained from dogs in groups 1 and 2 were 0.540ng/ml (SD±0.890)ng/mL and 0.440ng/mL (SD±1.106), respectively. At a significance level of 5%, the relation of CPK-MB with age, mass and total creatine phosphokinase (CPK-T) was not significant in groups 1 and 2. CPK-MB showed no difference, at 5% level, between groups 1 and 2. In conclusion, it is possible to use the human chemiluminescent immunometric assay kit in canine species and that hypoxia/ischemia revealed by ST segment deviation does not mean significant myocardium injury.
Resumo:
The effect of hypoxia on the levels of glycogen, glucose and lactate as well as the activities and binding of glycolytic and associated enzymes to subcellular structures was studied in brain, liver and white muscle of the teleost fish, Scorpaena porcus. Hypoxia exposure decreased glucose levels in liver from 2.53 to 1.70 µmol/g wet weight and in muscle led to its increase from 3.64 to 25.1 µmol/g wet weight. Maximal activities of several enzymes in brain were increased by hypoxia: hexokinase by 23%, phosphoglucoisomerase by 47% and phosphofructokinase (PFK) by 56%. However, activities of other enzymes in brain as well as enzymes in liver and white muscle were largely unchanged or decreased during experimental hypoxia. Glycolytic enzymes in all three tissues were partitioned between soluble and particulate-bound forms. In several cases, the percentage of bound enzymes was reduced during hypoxia; bound aldolase in brain was reduced from 36.4 to 30.3% whereas glucose-6-phosphate dehydrogenase fell from 55.7 to 28.7% bound. In muscle PFK was reduced from 57.4 to 41.7% bound. Oppositely, the proportion of bound aldolase and triosephosphate isomerase increased in hypoxic muscle. Phosphoglucomutase did not appear to occur in a bound form in liver and bound phosphoglucomutase disappeared in muscle during hypoxia exposure. Anoxia exposure also led to the disappearance of bound fructose-1,6-bisphosphatase in liver, whereas a bound fraction of this enzyme appeared in white muscle of anoxic animals. The possible function of reversible binding of glycolytic enzymes to subcellular structures as a regulatory mechanism of carbohydrate metabolism is discussed.
Resumo:
The interaction between pulmonary ventilation (V E) and body temperature (Tb) is essential for O2 delivery to match metabolic rate under varying states of metabolic demand. Hypoxia causes hyperventilation and anapyrexia (a regulated drop in Tb), but the neurotransmitters responsible for this interaction are not well known. Since L-glutamate is released centrally in response to peripheral chemoreceptor stimulation and glutamatergic receptors are spread in the central nervous system we tested the hypothesis that central L-glutamate mediates the ventilatory and thermal responses to hypoxia. We measured V E and Tb in 40 adult male Wistar rats (270 to 300 g) before and after intracerebroventricular injection of kynurenic acid (KYN, an ionotropic glutamatergic receptor antagonist), alpha-methyl-4-carboxyphenylglycine (MCPG, a metabotropic glutamatergic receptor antagonist) or vehicle (saline), followed by a 1-h period of hypoxia (7% inspired O2) or normoxia (humidified room air). Under normoxia, KYN (N = 5) or MCPG (N = 8) treatment did not affect V E or Tb compared to saline (N = 6). KYN and MCPG injection caused a decrease in hypoxia-induced hyperventilation (595 ± 49 for KYN, N = 7 and 525 ± 84 ml kg-1 min-1 for MCPG, N = 6; P < 0.05) but did not affect anapyrexia (35.3 ± 0.2 for KYN and 34.7 ± 0.4ºC for MCPG) compared to saline (912 ± 110 ml kg-1 min-1 and 34.8 ± 0.2ºC, N = 8). We conclude that glutamatergic receptors are involved in hypoxic hyperventilation but do not affect anapyrexia, indicating that L-glutamate is not a common mediator of this interaction.