38 resultados para Hydrogen fluoride
em Scielo Saúde Pública - SP
Resumo:
OBJECTIVE: To evaluate fluoride and aluminum concentration in herbal, black, ready-to-drink, and imported teas available in Brazil considering the risks fluoride and aluminum pose to oral and general health, respectively. METHODS: One-hundred and seventy-seven samples of herbal and black tea, 11 types of imported tea and 21 samples of ready-to-drink tea were divided into four groups: I-herbal tea; II-Brazilian black tea (Camellia sinensis); III-imported tea (Camellia sinensis); IV-ready-to-drink tea-based beverages. Fluoride and aluminum were analyzed using ion-selective electrode and atomic absorption, respectively. RESULTS: Fluoride and aluminum levels in herbal teas were very low, but high amounts were found in black and ready-to-drink teas. Aluminum found in all samples analyzed can be considered safe to general health. However, considering 0.07 mg F/kg/day as the upper limit of fluoride intake with regard to undesirable dental fluorosis, some teas exceed the daily intake limit for children. CONCLUSIONS: Brazilian and imported teas made from Camellia sinensis as well as some tea-based beverages are sources of significant amounts of fluoride, and their intake may increase the risk of developing dental fluorosis.
Resumo:
The aim of this study was to evaluate the adequacy of the Brazilian legislation about fluoride toothpaste. A search was conducted in LILACS, Medline and SciELO databases about the fluoride concentration found in Brazilians toothpastes, using descriptors on health. Publications since 1981 have shown that some Brazilian toothpastes are not able to maintain, during their expiration time, a minimum of 1,000 ppm F of soluble fluoride in the formulation. However, the Brazilian regulation (ANVISA, Resolution 79, August 28, 2000) only sets the maximum total fluoride (0.15%; 1,500 ppm F) that a toothpaste may contain but not the minimum concentration of soluble fluoride that it should contain to have anticaries potential, which according to systematic reviews should be 1,000 ppm F. Therefore, the Brazilian regulation on fluoride toothpastes needs to be revised to assure the efficacy of those products for caries control.
Resumo:
INTRODUCTION: The capacity to overcome the oxidative stress imposed by phagocytes seems to be critical for Candida species to cause invasive candidiasis. METHODS: To better characterize the oxidative stress response (OSR) of 8 clinically relevant Candida sp., glutathione, a vital component of the intracellular redox balance, was measured using the 5,5'-dithiobis-(2-nitrobenzoic acid (DTNB)-glutathione disulfide (GSSG) reductase reconversion method; the total antioxidant capacity (TAC) was measured using a modified method based on the decolorization of the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic) acid radical cation (ABTS*+). Both methods were used with cellular Candida sp. extracts treated or not with hydrogen peroxide (0.5 mM). RESULTS: Oxidative stress induced by hydrogen peroxide clearly reduced intracellular glutathione levels. This depletion was stronger in Candida albicans and the levels of glutathione in untreated cells were also higher in this species. The TAC demonstrated intra-specific variation. CONCLUSIONS: Glutathione levels did not correlate with the measured TAC values, despite this being the most important non-enzymatic intracellular antioxidant molecule. The results indicate that the isolated measurement of TAC does not give a clear picture of the ability of a given Candida sp. to respond to oxidative stress.
Resumo:
Omega-3 polyunsaturated fatty acids (n-3 PUFA) can modulate the immune system and their primary effect is on macrophage function. Paracoccidioidomycosis (PCM) is an endemic systemic mycosis in Latin America that is caused by the dimorphic fungus Paracoccidioides brasiliensis (Pb). Macrophages are the main defence against this pathogen and have microbicidal activity that is dependent on interferon-Γ and tumour necrosis factor (TNF)-α. These cytokines stimulate the synthesis of nitric oxide (NO) and hydrogen peroxide (H2O2), leading to the death of the fungus. To study the effect of n-3 PUFA on the host immune response during experimental PCM, macrophages that were obtained from animals infected with Pb18 and fed a diet enriched by linseed (LIN) oil were cultured and challenged with the fungus in vitro. The macrophage function was analysed based on the concentrations of TNF-α, NO and H2O2. LIN oil seems to influence the production of TNF-α during the development of disease. A diet enriched with LIN oil influences the microbicidal activity of the macrophages by inducing the production of cytokines and metabolites such as NO and H2O2, predominantly in the chronic phase of infection.
Resumo:
Ascorbate peroxidases (APX) are class I heme-containing enzymes that convert hydrogen peroxide into water molecules. The gene encoding APX has been characterized in 11 strains of Trypanosoma cruzi that are sensitive or resistant to benznidazole (BZ). Bioinformatic analysis revealed the presence of two complete copies of the T. cruzi APX (TcAPX) gene in the genome of the parasite, while karyotype analysis showed that the gene was present in the 2.000-kb chromosome of all of the strains analyzed. The sequence of TcAPX exhibited greater levels of similarity to those of orthologous enzymes from Leishmania spp than to APXs from the higher plant Arabidopsis thaliana. Northern blot and real-time reverse transcriptase polymerase chain reaction (RT-PCR) analyses revealed no significant differences in TcAPX mRNA levels between the T. cruzi strains analyzed. On the other hand, Western blots showed that the expression levels of TcAPX protein were, respectively, two and three-fold higher in T. cruzi populations with in vitro induced (17 LER) and in vivo selected (BZR) resistance to BZ, in comparison with their corresponding susceptible counterparts. Moreover, the two BZ-resistant populations exhibited higher tolerances to exogenous hydrogen peroxide than their susceptible counterparts and showed TcAPX levels that increased in a dose-dependent manner following exposure to 100 and 200 µM hydrogen peroxide.
Resumo:
The remaining phosphorus (Prem) has been used for estimating the phosphorus buffer capacity (PBC) of soils of some Brazilian regions. Furthermore, the remaining phosphorus can also be used for estimating P, S and Zn soil critical levels determined with PBC-sensible extractants and for defining P and S levels to be used not only in P and S adsorption studies but also for the establishment of P and S response curves. The objective of this work was to evaluate the effects of soil clay content and clay mineralogy on Prem and its relationship with pH values measured in saturated NaF solution (pH NaF). Ammonium-oxalate-extractable aluminum exerts the major impacts on both Prem and pH NaF, which, in turn, are less dependent on soil clay content. Although Prem and pH NaF have consistent correlation, the former has a soil-PBC discriminatory capacity much greater than pH NaF.
Resumo:
Their extended transparency in the IR makes them attractive for use as optical fibers for CO laser power delivery and optical amplification. This paper firstly describes the spectacular stabilizing effect of MgF2 on the binary system InF3-BaF2. The investigation of the InF3-BaF2-MgF2 system led to samples up to 5mm in thickness. Further optimization of this system was achieved by incorporation of limited amounts of other fluorides and resulted in increased resistence to devitrification. The second approach of this work was concerned to the investigation of the pseudo-ternary system InF3-GdF3-GaF3 at constant concentrations of ZnF2-SrF2-BaF2-NaF. Several compositions were studied in this system. The samples presented a better thermal stability when compared to other families of fluoride glasses. Therefore, these glasses seem to be very promising for the fabrication of special optical fibers. Thermal data are reported.
Resumo:
The present study reports details of the stoichiometric characterization of the mixed complex system, V(H2O2)PAR, formed when vanadium adequately reacts with hydrogen peroxide and with 4-(2-Pyridilazo)Resorcinol. Also the presence of polynuclear species was investigated in order to elucidate about unambiguous assignment of the molar absorptivity, stability constant and composition of the complex. Two mathematical treatments methods of the experimental results were employed. From the results it can be concluded that this system corresponds to a mononuclear complex with 1:1:1 stoichiometry.
Resumo:
This work presents two recycling processes for spent Li/MnO2 batteries. After removal of the solvent under vacuum the cathode + anode + electrolyte was submitted to one of the following procedures: (a) it was calcined (500 ºC, 5 h) and the calcined solid was submitted to solvent extraction with water in order to recover lithium salts. The residual solid was treated with sulfuric acid containing hydrogen peroxide. Manganese was recovered as sulfate; (b) the solid was treated with potassium hydrogeno sulfate (500 ºC, 5 h). The solid was dissolved in water and the resulting solution was added dropwise to sodium hydroxide. Manganese was recovered as dioxide. The residual solution was treated with potassium fluoride in order to precipitate lithium fluoride.
Resumo:
The "active mass" (cathode + anode + electrolyte) of spent Li-ion batteries was submitted to one of the following procedures: (a) it was calcined (500 ºC) and submitted to extraction with water to recover lithium salts. The residual solid was treated with sulfuric acid containing hydrogen peroxide. Cobalt was recovered as sulfate; (b) the "active mass" was treated with potassium hydrogen sulfate (500 ºC) and dissolved in water. Cobalt was precipitated together with copper after addition of sodium hydroxide. Lithium was partially recovered as lithium fluoride. Co-processing of other battery components (aluminum and copper foils) affected negatively the behavior of the recovery procedures. Previous segregation of battery components is essential for an efficient and economical processing of the "active mass".
Resumo:
This laboratory project is planned for an undergraduate chemistry laboratory in which students prepare a manganese porphyrin able to mimic the oxidative metabolism of carbamazepine, one of the most frequently prescribed drugs in the treatment of epilepsy. The in vitro oxidation of carbamazepine results in the formation of the corresponding 10,11-epoxide, the main in vivo metabolite. The reaction is catalyzed by manganese porphyrin in the presence of H2O2, an environmentally-friendly oxidant. Through this project students will develop their skills in organic synthesis, coordination chemistry, chromatographic techniques such as TLC and HPLC, UV-visible spectrophotometry, and NMR spectroscopy.
Resumo:
Hydrogen peroxide has been used for decades in developed countries as an oxidizing agent in the treatment of water, domestic sewage and industrial effluents. This study evaluated the influence of the concentration of H2O2 and pH on the inactivation of Escherichia coli cells and the disinfection of sewage treated. The results showed that the inactivation rate increased with pH and H2O2. The presence of other contaminants dissolved in the effluent is probably the cause of these differences, because E. coli inactivation in synthetic wastewater was found to be much faster than in the real treated domestic sewage.
Resumo:
Water electrolysis is one of the simplest methods used for hydrogen production. It has the advantage of being able to produce hydrogen using only renewable energy. To expand the use of water electrolysis, it is mandatory to reduce energy consumption, cost, and maintenance of current electrolyzers, and, on the other hand, to increase their efficiency, durability, and safety. In this study, modern technologies for hydrogen production by water electrolysis have been investigated. In this article, the electrochemical fundamentals of alkaline water electrolysis are explained and the main process constraints (e.g., electrical, reaction, and transport) are analyzed. The historical background of water electrolysis is described, different technologies are compared, and main research needs for the development of water electrolysis technologies are discussed.
Resumo:
A complex cation, diNOsarcobalt(III), [Co(diNOsar)]3+, (diNOsar = 1,8-dinitro-3,6,10,13,16,19-hexaazabicyclo-[6.6.6]eicosane), was synthesized and immobilized in the cavities of a Y zeolite by the reaction of precursor species in the pores of the zeolite. The encapsulated material was compared to the compound diNOsarcobalt(III) chloride, [Co(diNOsar)]Cl3. Both diNOsarcobalt(III) chloride and the zeolite-encapsulated complex, [Co(diNOsar)]3+/zeolite, were obtained in high yield and characterized by ultraviolet-visible and infrared spectroscopy. X-ray diffraction demonstrated the incorporation of the complex cation into the pores of the zeolite. The catalytic production of hydrogen peroxide from oxygenated water confirmed the successful synthesis of the complex diNOsarcobalt(III) immobilized in the zeolite.