19 resultados para Hot-rolled steel
em Scielo Saúde Pública - SP
Resumo:
Vibrio cholerae represents a significant threat to human health in developing countries. This pathogen forms biofilms which favors its attachment to surfaces and its survival and transmission by water or food. This work evaluated the in vitro biofilm formation of V. cholerae isolated from clinical and environmental sources on stainless steel of the type used in food processing by using the environmental scanning electron microscopy (ESEM). Results showed no cell adhesion at 4 h and scarce surface colonization at 24 h. Biofilms from the environmental strain were observed at 48 h with high cellular aggregations embedded in Vibrio exopolysaccharide (VPS), while less confluence and VPS production with microcolonies of elongated cells were observed in biofilms produced by the clinical strain. At 96 h the biofilms of the environmental strain were released from the surface leaving coccoid cells and residual structures, whereas biofilms of the clinical strain formed highly organized structures such as channels, mushroom-like and pillars. This is the first study that has shown the in vitro ability of V. cholerae to colonize and form biofilms on stainless steel used in food processing.
Resumo:
Land cover changes over time as a result of human activity. Nowadays deforestation may be considered one of the main environmental problems. The objective of this study was to identify and characterize changes to forest cover in Venezuela between 2005-2010. Two maps of deforestation hot spots were generated on the basis of MODIS data, one using digital techniques and the other by means of direct visual interpretation by experts. These maps were validated against Landsat ETM+ images. The accuracy of the map obtained digitally was estimated by means of a confusion matrix. The overall accuracy of the maps obtained digitally was 92.5%. Expert opinions regarding the hot spots permitted the causes of deforestation to be identified. The main processes of deforestation were concentrated to the north of the Orinoco River, where 8.63% of the country's forests are located. In this region, some places registered an average annual forest change rate of between 0.72% and 2.95%, above the forest change rate for the country as a whole (0.61%). The main causes of deforestation for the period evaluated were agricultural and livestock activities (47.9%), particularly family subsistence farming and extensive farming which were carried out in 94% of the identified areas.
Resumo:
OBJECTIVE: To use published Hypertension Optimal Treatment (HOT) Study data to evaluate changes in cardiovascular mortality in nondiabetic hypertensive patients according to the degree of reduction in their diastolic blood pressure. METHODS: In the HOT Study, 18,700 patients from various centers were allocated at random to groups having different objectives of for diastolic blood pressure: <=90 (n=6264); <=85 (n=6264); <=80mmHg (n=6262). Felodipine was the basic drug used. Other antihypertensive drugs were administered in a sequential manner, aiming at the objectives of diastolic blood pressure reduction. RESULTS: The group of nondiabetic hypertensive subjects with diastolic pressure<=80mmHg had a cardiovascular mortality ratio of 4.1/1000 patients/year, 35.5% higher than the group with diastolic pressure <=90mmHg (cardiovascular mortality ratio, 3.1/1000 patients/year). In contrast, diabetic patients allocated to the diastolic pressure objective group of <=80mmHg had a 66.7% reduction in cardiovascular mortality (3.7/1000 patients/year) when compared with the diastolic pressure group of <=90mmHg (cardiovascular mortality ratio, 11.1/1000 patients/year). CONCLUSION: The results indicate that in hypertensive diabetic patients reduction in diastolic blood pressure to levels <=80mmHg decreases the risk of fatal cardiovascular events. It remains necessary to define the level of diastolic blood pressure <=90mmHg at which maximal reduction in cardiovascular mortality is obtained for nondiabetics.
Resumo:
Acid Mine Drainage (AMD) is one of the main environmental impacts caused by mining. Thus, innovative mitigation strategies should be exploited, to neutralize acidity and prevent mobilization of trace elements in AMD. The use of industrial byproducts has been considered an economically and environmentally effective alternative to remediate acid mine drainage. Therefore, the objective of this study was to evaluate the use of steel slag to mitigate acid mine drainage in a sulfidic material from a uranium mine, as an alternative to the use of limestone. Thus, increasing doses of two neutralizing agents were applied to a sulfidic material from the uranium mine Osamu Utsumi in Caldas, Minas Gerais State. A steel slag from the company ArcelorMittal Tubarão and a commercial limestone were used as neutralizing agents. The experiment was conducted in leaching columns, arranged in a completely randomized, [(2 x 3) + 1] factorial design, consisting of two neutralizing agents, three doses and one control, in three replications, totaling 21 experimental units. Electrical conductivity (EC), pH and the concentrations of Al, As, Ca, Cd, Cu, Fe, Mn, Ni, S, Se, and Zn were evaluated in the leached solutions. The trace element concentration was evaluated by ICP-OES. Furthermore, the CO2 emission was measured at the top of the leaching columns by capturing in NaOH solution and titration with HCl, in the presence of BaCl2. An increase in the pH of the leachate was observed for both neutralizing agents, with slightly higher values for steel slag. The EC was lower at the higher lime dose at an early stage of the experiment, and CO2 emission was greater with the use of limestone compared to steel slag. A decrease in trace element mobilization in the presence of both neutralizing agents was also observed. Therefore, the results showed that the use of steel slag is a suitable alternative to mitigate AMD, with the advantage of reducing CO2 emissions to the atmosphere compared to limestone.
Hot spots for diversity of Magnaporthe oryzae physiological races in irrigated rice fields in Brazil
Resumo:
The objective of this work was to evaluate the Magnaporthe oryzae pathotype diversity in new commercial irrigated rice fields in the Araguaia River Valley, state of Tocantins, Brazil. The causal agent of rice blast has heavily affected rice production in the region. Despite the efforts of breeding programs, blast resistance breakdown has been recorded shortly after the release of new resistant cultivars developed for the region. Among the causes of resistance breakage is the capacity of the fungus to rapidly develop new pathotypes. A sample of 479 M. oryzae monosporic isolates was obtained and tested using the international rice blast differential set. Isolate collections were made in small areas designed as trap nurseries and in scattered sites in their vicinity. Analysis of 250 M. oryzae isolates from three trap nurseries indicated the presence of 45 international M. oryzae races belonging to seven pathotype groups (IA-IG). In the isolates tested, 61 M. oryzae pathotypes belonging to all but the IH group were detected. The new areas of irrigated rice in the Araguaia River Valley have the highest diversity of M. oryzae pathotypes reported so far in Brazil.
Resumo:
The influence of chloride deposition rate on concrete using an atmospheric corrosion approach is rarely studied in the literature. Seven exposure sites were selected in Havana City, Cuba, for exposure of reinforced concrete samples. Two significantly different atmospheric corrosivity levels with respect to corrosion of steel reinforced concrete were observed after two years of exposure depending on atmospheric chloride deposition and w/c ratio of the concrete. Changes in corrosion current are related to changes in chloride penetration and chloride atmospheric deposition. The influence of sulphur compound deposition could also be a parameter to consider in atmospheric corrosion of steel reinforced concrete.
Resumo:
The inhibition of the corrosion of mild steel in 2M hydrochloric acid solutions by Pyridoxol hydrochloride (PXO) has been studied using weight loss and hydrogen evolution techniques. The inhibitor (PXO) exhibited highest inhibition efficiency of 71.93% at the highest inhibitor concentration of 1.0 x 10-2M investigated and a temperature of 303K from weight loss result. Also, inhibition was found to increase with increasing concentration of the inhibitor and decreasing temperature. A first order type of mechanism has been deduced from the kinetic treatment of the weight loss results and the process of inhibition attributed to physical adsorption. The results obtained from the two techniques show that pyridoxol hydrochloride could serve as an effective inhibitor of the corrosion of mild steel in HCl acid solution. The compound obeys the Langmuir adsorption isotherm equation.
Resumo:
A model for predicting temperature evolution for automatic controling systems in manufacturing processes requiring the coiling of bars in the transfer table is presented. Although the method is of a general nature, the presentation in this work refers to the manufacturing of steel plates in hot rolling mills. The predicting strategy is based on a mathematical model of the evolution of temperature in a coiling and uncoiling bar and is presented in the form of a parabolic partial differential equation for a shape changing domain. The mathematical model is solved numerically by a space discretization via geometrically adaptive finite elements which accomodate the change in shape of the domain, using a computationally novel treatment of the resulting thermal contact problem due to coiling. Time is discretized according to a Crank-Nicolson scheme. Since the actual physical process takes less time than the time required by the process controlling computer to solve the full mathematical model, a special predictive device was developed, in the form of a set of least squares polynomials, based on the off-line numerical solution of the mathematical model.
Resumo:
The aim of the present paper is to study the relationship between the fracture modes in hydrogen-assisted cracking (HAC) in microalloied steel and the emission of acoustic signals during the fracturing process. For this reason, a flux-cored arc weld (FCAW) was used in a high-strength low-alloy steel. The consumable used were the commercially available AWS E120T5-K4 and had a diameter of 1.6 mm. Two different shielding gases were used (CO2 and CO2+5% H2) to obtain complete phenomenon characterization. The implant test was applied with three levels of restriction stresses. An acoustic emission measurement system (AEMS) was coupled to the implant test apparatus. The output signal from the acoustic emission sensor was passed through an electronic amplifier and processed by a root mean square (RMS) voltage converter. Fracture surfaces were examined by scanning electron microscopy (SEM) and image analysis. Fracture modes were related with the intensity, the energy and the number of the peaks of the acoustic emission signal. The shielding gas CO2+5% H2 proved to be very useful in the experiments. Basically, three different fracture modes were identified in terms of fracture appearance: microvoid coalescence (MVC), intergranular (IG) and quasi-cleavage (QC). The results show that each mode of fracture presents a characteristic acoustic signal.
Resumo:
Crack formation and growth in steel bridge structural elements may be due to loading oscillations. The welded elements are liable to internal discontinuities along welded joints and sensible to stress variations. The evaluation of the remaining life of a bridge is needed to make cost-effective decisions regarding inspection, repair, rehabilitation, and replacement. A steel beam model has been proposed to simulate crack openings due to cyclic loads. Two possible alternatives have been considered to model crack propagation, which the initial phase is based on the linear fracture mechanics. Then, the model is extended to take into account the elastoplastic fracture mechanic concepts. The natural frequency changes are directly related to moment of inertia variation and consequently to a reduction in the flexural stiffness of a steel beam. Thus, it is possible to adopt a nondestructive technique during steel bridge inspection to quantify the structure eigenvalue variation that will be used to localize the grown fracture. A damage detection algorithm is developed for the proposed model and the numerical results are compared with the solutions achieved by using another well know computer code.
Resumo:
Textile manufacture occupies a prominent place in the national economy. Because of its importance researches have been made on the development of new materials, equipment and methods used in the production process. The cutting of textiles starts in the basic stage, to be followed by the process of the making of clothes and other articles. In the hot cutting of fabric, one of the variables of great importance in the control of the process is the contact temperature between the tool and the fabric. This work presents a technique for the measurement of the temperature based on the processing of infrared images. With this purpose, it was developed a system which is composed of an infrared camera, a framegrabber PC board and a software which analyses the punctual temperature in the cut area enabling the operator to achieve the necessary control of other variables involved in the process.
Resumo:
It is widely accepted that the classical constant-temperature hot-plate test is insensitive to cyclooxygenase inhibitors. In the current study, we developed a variant of the hot-plate test procedure (modified hot-plate (MHP) test) to measure inflammatory nociception in freely moving rats and mice. Following left and right hind paw stimulation with a phlogogen and vehicle, respectively, the animals were placed individually on a hot-plate surface at 51ºC and the withdrawal latency for each paw was determined simultaneously in measurements performed at 15, 60, 180, and 360 min post-challenge. Plantar stimulation of rats (250 and 500 µg/paw) and mice (125-500 µg/paw) with carrageenan led to a rapid hyperalgesic response of the ipsilateral paw that reached a plateau from 15 to 360 min after challenge. Pretreatment with indomethacin (4 mg/kg, ip) inhibited the phenomenon at all the times analyzed. Similarly, plantar stimulation of rats and mice with prostaglandin E2 (0.5 and 1 µg/paw) also resulted in rapid hyperalgesia which was first detected 15 min post-challenge. Finally, we observed that the MHP test was more sensitive than the classical Hargreaves' test, being able to detect about 4- and 10-fold lower doses of prostaglandin E2 and carrageenan, respectively. In conclusion, the MHP test is a simple and sensitive method for detecting peripheral hyperalgesia and analgesia in rats and mice. This test represents a low-cost alternative for the study of inflammatory pain in freely moving animals.
Resumo:
Individuals with systemic arterial hypertension have a higher risk of heat-related complications. Thus, the aim of this study was to examine the thermoregulatory responses of hypertensive subjects during recovery from moderate-intensity exercise performed in the heat. A total of eight essential hypertensive (H) and eight normotensive (N) male subjects (age=46.5±1.3 and 45.6±1.4 years, body mass index=25.8±0.8 and 25.6±0.6 kg/m2, mean arterial pressure=98.0±2.8 and 86.0±2.3 mmHg, respectively) rested for 30 min, performed 1 h of treadmill exercise at 50% of maximal oxygen consumption, and rested for 1 h after exercise in an environmental chamber at 38°C and 60% relative humidity. Skin and core temperatures were measured to calculate heat exchange parameters. Mean arterial pressure was higher in the hypertensive than in the normotensive subjects throughout the experiment (P<0.05, unpaired t-test). The hypertensive subjects stored less heat (H=-24.23±3.99 W·m−2vs N=-13.63±2.24 W·m−2, P=0.03, unpaired t-test), experienced greater variations in body temperature (H=-0.62±0.05°C vsN=-0.35±0.12°C, P=0.03, unpaired t-test), and had more evaporated sweat (H=-106.1±4.59 W·m−2vs N=-91.15±3.24 W·m−2, P=0.01, unpaired t-test) than the normotensive subjects during the period of recovery from exercise. In conclusion, essential hypertensive subjects showed greater sweat evaporation and increased heat dissipation and body cooling relative to normotensive subjects during recovery from moderate-intensity exercise performed in hot conditions.
Resumo:
Cashew (Anacardium occidentale L.) apples from Pacajus, Ceará State, Brazil, were processed into high pulp content juice. The juice was packed either by hot fill or an aseptic process and evaluated for physical, physical-chemical, and sensorial changes during a 12-month storage period at room temperature. The results indicated that pH, soluble solids, total acidity, total sugar content and color did not change significantly during storage nor were affected by the type of filling. The sensorial analysis showed that juice acceptance remained high throughout the storage period regardless of the filling system. Differences in juice viscosity persisted between both processes.
Resumo:
Este trabalho objetivou avaliar a estabilidade do suco tropical de acerola adoçado, elaborado pelos processos hot fill (garrafas de vidro) e asséptico (embalagens cartonadas), com relação às alterações químicas e físico-químicas (pH, sólidos solúveis totais, acidez total titulável, cor, açúcares redutores, não redutores e totais), sensoriais e microbiológicas, durante 350 dias de armazenamento em condições similares às de comercialização (28 °C ± 2 °C). Ao final do experimento, constatou-se que as amostras de suco de ambos os processos mantiveram uma adequada estabilidade microbiológica. O suco do processo hot fill teve maior aceitação global, enquanto o do processo asséptico manteve, ao final dos 350 dias, a aceitação inicial. As amostras do processo asséptico apresentaram inicialmente melhor sabor em comparação com as do processo hot fill, no entanto, as do processo hot fill mantiveram o sabor estável, enquanto o sabor do suco do processo asséptico teve menor aceitação ao longo do armazenamento. Ainda foram observadas, alterações químicas e físico-químicas nos sucos de ambos os processos. Em geral, o processo hot fill foi o mais eficiente em manter a estabilidade do suco.